Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

Using C for CGI Programming

Clay Dowling

Abstract

You can speed up complex Web tasks while retaining the simplicity of CGI. With many useful libraries
available, the jump from a scripting language to C isn't as big as you might think.

Perl, Python and PHP are the holy trinity of CGI application programming. Stores have shelves full of books
about these languages, they're covered well in the computer press and there's plenty on the Internet about
them. A distinct lack of information exists, however, on using C to write CGI applications. In this article, |
show how to use C for CGI programming and lay out some situations in which it provides significant
advantages.

I use C in my applications for three reasons: speed, features and stability. Although conventional wisdom
says otherwise, my own benchmarks have found that C and PHP are equivalent in speed when the processing
to be done is simple. When there is any complexity to the processing, C wins hands-down.

In addition, C provides an excellent feature set. The language itself comes with a bare-bones set of features,
but a staggering number of libraries are available for nearly any job for which a computer is used. Perl, of
course, is no slouch in this area, and | don't contend that C offers more extensibility, but both can fill nearly
any bill.

Furthermore, CGI programs written in C are stable. Because the program is compiled, it is not as susceptible
to changes in the operating environment as PHP is. Also, because the language is stable, it does not
experience the dramatic changes to which PHP users have been subjected over the past few years.

The Application

My application is a simple event listing suitable for a business to list upcoming events, say, the meeting
schedule for a day or the events at a church. It provides an administrative interface intended to be
password-protected and a public interface that lists all upcoming events (but only upcoming events). This
application also provides for runtime configuration and interface independence.

| use a database, rather than write my own data store, and a configuration file contains the database
connection information. A collection of files is used to provide interface/code separation.

The administrative interface allows events to be listed, edited, saved and deleted. Listing events is the default
action if no other action is provided. Both new and existing events can be saved. The interface consists of a
grid screen that displays the list of events and a detail screen that contains the full record of a single event.

The database schema for this application consists of a single table, defined in Listing 1. This schema is
MySQL-specific, but an equivalent schema can be created for any database engine.

Listing 1. MySQL Schema

CREATE TABLE event (

1of8 6/18/2006 7:46 PM

Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

event_no int(11) NOT NULL auto_increment,
event_begin date NOT NULL default *0000-00-00",
name varchar(80) NOT NULL default **,

location varchar(80) NOT NULL default =",
begin_hour varchar(10) default NULL,

end_hour varchar(10) default NULL,

event_end date NOT NULL default "0000-00-00",
PRIMARY KEY (event_no),

KEY event_date (event_begin)

The following functions are the minimum necessary to implement the functionality of the administrative
interface: list_events(), show_event(), save_event() and delete_event(). | also am going to abstract the
reading and writing of database data into their own group of functions. This keeps each function simpler,
which makes debugging easier. The functions that | need for the data-storage interface are event_create(),
event_destroy(), event_read(), event_write and event_delete. To make my life easier, I'm also going to add
event_fetch_range(), so | can choose a range of events—something I need to do in at least two places.

Next, | need to abstract my records to C structures and abstract database result sets to linked lists. Abstraction
lets me change database engines or data representation with relatively little expense, because only a little part
of my code deals directly with the data store.

There isn't room here to print all of my source code. Complete source code and my Makefile can be
downloaded from my Web site (see the on-line Resources).

Tools

The first hurdle to overcome when using C is acquiring the set of tools you need. At bare minimum, you need
a CGI parser to break out the CGI information for you. Chances are good that you're also looking for some
database connectivity. A little bit of logic/interface independence is good too, so you aren't rewriting code
every time the site needs a makeover.

For CGI parsing, | recommend the cgic library from Thomas Boutell (see Resources). It's shockingly easy to
use and provides access to all parts of the CGI interface. If you're a C++ person, the cgicc libraries also are
suitable (see Resources), although | found the Boutell library to be easier to use.

MySQL is pretty much the standard for UNIX Web development, so | stick with it for my sample
application. Every significant database engine has a functional C interface library, though, so you can use
whatever database you like.

I'm going to provide my own interface-independence routines, but you could use libxml and libxslt to do the
same thing with a good deal more sophistication.

Runtime Configuration

At runtime, | need to be able to configure the database connection. Given a filename and an array of
character strings for the configuration keys, my configuration function populates a corresponding array of
configuration values, as shown in Listing 2. Now | can populate a string array with whatever keys I've chosen
to use and get the results back in the value array.

Listing 2. Runtime Configuration Function

2 of 8 6/18/2006 7:46 PM

Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

30f8

void config_read(char* filename, char** key,
char** value) {

FILE* cfile;
char tok[80];
char 1ine[2048];
char* target;
int i;

int length;

cfile = fopen(filename, "r');

iT (Icfile) {
perror(*'config_read™);
return;

}

while(fgets(line, 2048, cfile)) {
if ((target = strchr(line, "="))) {
sscanf(line, "%80s", tok);
for(i=0; key[i]; i++) {
it (strcmp(key[i], tok) == 0) {
target++;
while(isspace(*target)) target++;
length = strlen(target);
value[i1] = (char*)calloc(l, length + 1);
strcpy(value[i], target);
target = &value[i][length - 1];
while(isspace(*target)) *target-- = 0;
}
}
}

by
fclose(cfile);

User Interface

The user interface has two parts. As a programmer, I'm concerned primarily with the input forms and URL
strings. Everybody else cares how the page around my form looks and takes the form itself for granted. The
solution to keep both parties happy is to have the page exist separately from the form and my program.

Templating libraries abound in PHP and Perl, but there are no common HTML templating libraries in C. The
easiest solution is to include only the barest minimum of the output in my C code and keep the rest in HTML
files that are output at the appropriate time. A function that can do this is found in Listing 3.

Listing 3. HTML Template Function

void html_get(char* path, char* file) {

struct stat sb;
FILE* html;

char* buffer;

char fullpath[1024];

/* File & path name exceed system limits */
if (strlen(path) + strlen(file) > 1024) return;

sprintf(fullpath, "%s/%s', path, file);
if (stat(fullpath, &sb)) return;

6/18/2006 7:46 PM

Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

buffer = (char*)calloc(l, sb.st_size + 1);
if (1buffer) return;

html = fopen(fullpath, "r');
fread((void*)buffer, 1, sb.st size, html);
fclose(html);

puts(buffer);

free(buffer);

Before generating output, | need to tell the Web server and the browser what I'm sending;
cgiHeaderContentType() accomplishes this task. | want a content type of text/html, so | pass that as the
argument. The general steps to follow for any page | want to display are:

e cgiHeaderContentType("text/html");
e html_get(path, pagetop.html);
e Generate the program content.

e html_get(path, pagebottom.html);

Form Processing

Now that | can generate a page and print a form, | need to be able to process that form. | need to read both
numeric and text elements, so | use a couple of functions from the cgic library: cgiFormStringNoNewlines()
and cgiForminteger(). The cgic library implements the main function and requires that | implement int
cgiMain(void). cgiMain() is where I put the bulk of my form processing.

To display a single record in my show_event function, | get the event_no (my primary key) from the CGI
eventno parameter. cgiForminteger() retrieves an integer value and sets a default value if no CGI parameter
IS provided.

I also need to get a whole raft of data from the form in save_event. Dates are thorny things to input because
they consist of three pieces of data: year, month and date. | need both a begin and an end date, which gives
me six fields to interpret. | also need to input the name of the event, begin and end times (which are strings
because they might be events themselves, such as sunrise or sunset) and the location. Listing 4 shows how

this works in code.

Listing 4 also demonstrates cgiHeaderLocation(), a function that redirects the user to a new page. After I've
saved the submitted data, | want to show the event listing page. Instead of a literal string, | use one of the
variables that libcgic provides, cgiScriptName. Using this variable instead of a literal one means the program
name can be changed without breaking the program.

Listing 4. save_event(), Parsing CGI Data

struct event* e;

e = event_create();

cgiForminteger(*'eventno', &e->event_no, 0);

cgiFormStringNoNewlines(*'name', e->name, 80);

cgiFormStringNoNewlines(*"location™,
e->location, 80);

/* Processing date fields */

4 of 8 6/18/2006 7:46 PM

Using C for CGI Programming

50f 8

cgiForminteger(*'beginyear",

&e->event_begin->year, 0);
cgiForminteger(*'beginmonth,

&e->event_begin->month, 0);
cgiForminteger(*'beginday', &e->event begin->day, 0);
cgiForminteger(*'endyear', &e->event_end->year, 0);
cgiForminteger(“"'endmonth', &e->event_end->month, 0);
cgiForminteger(*"'endday”, &e->event_end->day, 0);

/* Process begin & end times separately */

cgiFormStringNoNewl ines(*'beginhour™,
e->event_begin->hour, 10);

cgiFormStringNoNewl ines(*'endhour™,
e->event_end->hour, 10);

event_write(e);

cgiHeaderLocation(cgiScriptName);

Finally, I need a way to handle the submit buttons. They're the most complex input, because | need to launch
a function based on their values and select a default value, just in case. The cgic library has a function,
cgiFormSelectSingle(), that emulates this behavior exactly. It requires the list of possible values to be in an
array of strings. It populates an integer variable with the index of the parameter in the array or uses a default
value if there are no matches.

Listing 5. Handling Submit Buttons

char* command[5] = {"List", "'Show",
"Save", "Delete", 0};
void (*action)(void)[5] = {list_events,
show_event, save_event, delete_event, 0};
int result;

cgiFormSelectSingle(*'do', command, 4, &result, 0);
action[result]Q;

See Resources for information on function pointers. If function pointers still baffle you, you can choose the
function to run in a switch statement. | prefer the array of function pointers because it is more compact, but
my older code still makes use of the switch statement.

Database System

MySQL from C is largely the same as PHP, if you're used to that interface. You have to use MySQL's string
escape functions to escape problematic characters in your strings, such as quote characters or the back slash
character, but otherwise it is basically the same. The show_event() function requires me to fetch a single
record from the primary key. All of the error checking bulks up the code, but it's really three basic statements.
A call to mysql_query() executes the MySQL statement and generates a result set. A call to
mysql_store_result() retrieves the result set from the server. Finally, a call to mysql_fetch_row() pulls a
single MYSQL_ROW variable from the result set.

The MYSQL_ROW variable can be treated like an array of strings (char**). If any of the data is numeric and
you want to treat it as numeric data, you need to convert it. For instance, in my application it is desirable to
have the date as three separate numeric components. Because this data is structured as YYYY-MM-DD, | use
sscanf() to get the components (Listing 6).

6/18/2006 7:46 PM

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

Listing 6. Retrieving Data from MySQL

MYSQL_RES* res;
MYSQL_ROW row;
int beginyear;
int beginmonth;
int beginday;

if (mysql_query(db, sqgl)) {
print_error(mysqgl_error(db));
return;

}

if((res = mysql_store result(dbh)) == 0) {
print_error(mysgl_error(db));
return;

}
if ((row = mysgl_fetch_row(res)) == 0) {
print_error("'"No event found by that number™);

return;
}
sscanf(row[0], "%d-%d-%d', &beginyear, &beginmonth,
&beginday);

Writing data to the database is more interesting because of the need to escape the data. Listing 7 shows how
it is done.

Listing 7. Using User-Supplied Data in MySQL

char name[11];
char escapedname[21];

cgiFormStringNoNewlines("'name™, name, 10);
mysql_real_escape_string(db, escapedname, name,
strilen(name));

escapedname holds the same string as name, with MySQL special characters escaped so | can insert them
into an SQL statement without worry. It is essential that you escape all strings read from user input;
otherwise, a devious person could take advantage of your lapse and do unpleasant things to your database.

Debugging CGI Programs

One distinct disadvantage of debugging C is that errors tend to cause a segmentation fault with no diagnostic
message about the source of the error. Debuggers are fine for most other types of programs, but CGI
programs present a special challenge because of the way they acquire input.

To help with this challenge, the cgic library includes a CGI program called capture. This program saves to a
file any CGlI input sent to it. You need to set this filename in capture's source code. When your CGI program
needs debugging, add a call to cgiReadEnvironment(char*) to the top of your cgiMain() function. Be sure to
set the filename parameter to match the filename set in capture. Then, send the problematic data to capture,
making it either the action of the form or the script in your request. You now can use GDB or your favorite
debugger to see what sort of trouble your code has generated.

You can take some steps to simplify later debugging and development. Although these apply to all
programming, they pay off particularly well in CGI programming. Remember that a function should do one

6 of 8 6/18/2006 7:46 PM

Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

70f 8

thing and one thing only, and test early and test often.

It's a good idea to test each function you write as soon as possible to make sure it performs as expected. And,
it's not a bad idea to see how it responds to erroneous data as well. It's highly likely that at some point the
function will be given bad data. Catching this behavior ahead of time can save unpleasant calls during your
off hours.

Deployment

In most situations, your development machine and your deployment machine are not going to be the same.
As much as possible, try to make your development system match the production system. For instance, my
software tends to be developed on Linux or OpenBSD and nearly always is deployed on FreeBSD.

When you're preparing to build or install on the deployment machine, it is particularly important to be aware
of differences in library versions. You can see which dynamic libraries your code uses with 1dd. It's a good
idea to check this information, because you often may be surprised by what additional dependencies your
libraries bring.

If the library versions are close, usually reflected in the same major number, there probably isn't a big
problem. It's not uncommon for deployment and development machines to have incompatible versions if
you're deploying to an externally hosted Web site.

The solution | use is to compile my own local version of the library. Remove the shared version of the
library, and link against this local version rather than the system version. It bulks up your binary, but it
removes your dependency on libraries you don't control.

Once you have built your binary on the deployment system, run 1dd again to make sure that all of the
dynamic libraries have been found. Especially when you are linking against a local copy of a library, it's easy
to forget to remove the dynamic version, which won't be found at runtime (or by 1dd). Keep tweaking the
build process; build and recheck until there are no unfound libraries.

Speed: CGI vs. PHP

Conventional wisdom holds that a program using the CGI interface is slower than a program using a
language provided by a server module, such as mod_php or mod_perl. Because | started writing Web
applications with PHP, | use it here as my basis for comparison with a CGI program written in C. | make no
assertions about the relative speed of C vs. Perl.

The comparison that | used was the external interface to the database (events.cgi and events.php), because
both used the same method for providing interface separation. The internal interface was not tested, as calls
to the external interface should dwarf calls to the internal.

Apache Benchmark was used to hit each version with 10,000 queries, as fast as the server could take it. The
C version had a mean transaction time of 581ms, and the PHP version had a mean transaction time of 601ms.
With times so close, | suspect that if the tests were repeated, some variation in time would be seen. This
proved correct, although the C version was slightly faster than the PHP version more times than not.

My normal development uses a more complex interface separation library, libtemplate (see Resources). |
have PHP and C versions of the library. When | compared versions of the event scheduler using libtemplate, |
found that C had a much more favorable response time. The mean transaction time for the C version was
625ms, not much more than it was for the simpler version. The PHP version had a mean transaction time of

6/18/2006 7:46 PM

Using C for CGI Programming http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/1060000/10535...

1,957ms. It also was notable that the load number while the PHP version was running generally was twice
what was seen while the C version was running. No users were on the system, and no other significant
applications were running when this test was done.

The fairly close times of the two C versions tell us that most of the execution time is spent loading the
program. Once the program is loaded, the program executes quite quickly. PHP, on the other hand, executes
relatively slowly. Of course, PHP doesn't escape the problem of having to be loaded into memory. It also
must be compiled, a step that the C program has been through already.

Conclusions

With the right tools and a little experience, developing CGI applications with C is no more difficult than it is
when using Perl or PHP. Now that | have the experience and the tools, C is my preferred language for CGI
applications.

C excels when the application requires more advanced processing and long-term stability. It is not especially
susceptible to failure when server changes are beyond your control, unlike PHP. Short of removing a shared
library, such as libc or libmysqglclient, the C version of our application is hard to break. The speed of
execution for C programs makes it a clear choice when the application requires more complex data
processing.

Resources for this article: http://www.linuxjournal.com/article/8058.

8 of 8 6/18/2006 7:46 PM

