

Evaluating Performance using
Message Passing Interface

By:
Jasmina Vasiljevic

Ramya Mohan
Bassim Ibrahim

Professor Nagi Mekhiel

December 9th 2008-12-09

2

Abstract

Combinatorial optimization problems are common and inherently posses exponentially
growing execution times, which often do not lead to global minimums. One common
such problem is the placement algorithm in an FPGA. In order for a netlist to be mapped
onto an FPGA such that the trace lengths between all the logic blocks are minimized, a
suitable physical location has to be determined for each logic block. In this project we
implement the simulated annealing algorithm on a placement problem. In order to
improve performance, we parallelize the algorithm, and run it on a number of machines
using MPI. We examine four different parallelization techniques. Based on preliminary
results, we chose the best one, Independent Sets [jas2] , and fully implemented it. As a
result, we achieved speedups very close to the number of machines used.

3

Table of Contents
Evaluating Performance using Message Passing Interface 1
Abstract ... 2
1. Message Passing Architecture .. 5

1.1 Introduction ... 5
1.2 Introduction to Message Passing .. 5
1.3 Advantages of Parallel Programming ... 7
1.4 Parallel Programming goals .. 7
1.5 Message: ... 8

2. Communications ... 9
2.1 Point-to-Point .. 9

2.1.1 Blocking vs. Non-blocking .. 9
2.2 Collective Communication ... 10

2.2.1 All or None .. 10
2.2.2 Types of Collective Operations ... 11
2.2.3 Programming Considerations and Restrictions .. 11

2.3 MPI Programming: ... 13
2.4 Compiling and Running MPI Applications: ... 13
2.5 Installing MPICH2 ... 14

3. Net List.. 16
3.1 Contents and Structure of a Netlist ... 16
3.2 Hierarchy ... 17
3.3 Netlist Output .. 17

4. Case Study .. 19
4.1 FPGA Placement Problem .. 19

4.1.1 Importance of Placement ... 20
4.2 Simulated Annealing ... 20

4.2.1 Introduction to Simulated Annealing ... 20
4.2.2 The Algorithm .. 20
4.2.3 Implementation Details .. 23

4.3 Partitioned Placements: Parallelization of the Algorithm 24
4.3.1 Partitioning By Area .. 24
4.3.2 Partitioned Sets .. 27
4.3.3 Sequential Proposals: ... 28
4.3.4 Independent Sets .. 29

5. Variables ... 31
5.1 Constants ... 32
5.2 Trials Summary ... 32

6. Results ... 35
6.1 Array Size: 100 ... 35
6.2 Array Size: 2 500 .. 36
6.3 Array Size: 100 000 .. 38

7. Conclusion .. 41

4

8. References ... 42
9. Code .. 44

5

1. Message Passing Architecture

1.1 Introduction

Message passing systems provides alternative methods for communication and
movement of data among multiprocessors. A message passing system typically combines
local memory and the processors at each node of the interconnection network. There is no
global memory so it is necessary to move data from one local memory to another by
means of message passing. This is typically done by send/receive pairs of commands,
which is written into the application software. Each processor has access to its own local
memory and can communicate with other processors using the interconnection network
as shown in Figure 1.1. These systems eventually gave way to internet-connected systems
where the processor/memory nodes are cluster nodes, servers, clients, or nodes in grater
grid.

Figure 1.1 Message Passing Systems

1.2 Introduction to Message Passing

A message passing architecture is used to communicate data among a set of
processors without the need for global memory. The basis for the scheme is that each
processor has its own local memory and communicates with other processors using
messages. The elimination of the need for a large global memory together with its
synchronization requirement, gives message passing schemes an edge over shared
memory schemes.

Interconnection Network

P1 M1

P2 M2 Pn Mn

6

Figure 1 shows the main components of the message passing architecture. There

are n nodes in the figure. A node Ni consists of processor Pi and a local memory Mi. Each
processor has its own address space. Nodes communicate with each other by links
(external link) and via an interconnection network. Two important factors must be
considered in designing message passing interconnection networks: link bandwidth and
latency. The link bandwidth is defined as the number of bits that can be transmitted per
unit of time (bits/s). Network latency is defined as the time to complete a message
transfer through the network.

Traditionally, software has been written for serial computation to be run on a
single computer having a single Central Processing Unit (CPU). A problem is broken into
a discrete series of instructions. Instructions are executed one after another .Only one
instruction may execute at any moment in time Figure 1.2.

Figure 1.2 Serial computation

In executing a given application program using message passing, the program is
divided into concurrent processors; each is executed on a separate processor Figure 1.3. If
the number of processes is larger than the number of the number of processors, then more
than one process will have to be executed on a processor in a time-shard fashion
.processes running on a given processor use internal channels to exchange messages
among themselves. Processes running on different processors use the external channels to
exchange messages. Data exchanged among processors cannot be shared; it is rather
copied (using send/receive messages). An important advantage of this form of data
exchange is the elimination of the need for synchronization constructs, such as
semaphores, which result in performance improvement. In addition, a message passing
scheme offers flexibility scalable in accommodating a large number of processors in
addition to being readily scalable.

7

Figure 1.3 Parallel computation

1.3 Advantages of Parallel Programming

 Need to solve larger problems

 more memory intensive
 more computation
 more data intensive

 Parallel programming provides
 more CPU resources
 more memory resources
 solve problems that were not possible with serial program
 solve problems more quickly

1.4 Parallel Programming goals

 Reduce execution time :
 computation time
 idle time - waiting for data from other processors
 communication time - time the processors take to send and receive messages

 Load Balancing
 divide the work equally among the available processors

8

 Where possible - overlap communication and computation
 Many problems scale well to only a limited number of processors

1.5 Message:

A message is made up of an array of elements of a particular MPI data type. The
basic MPI data types correspond to the basic C or Fortran data types. The data types
corresponding to C are tabulated in Table 1.

MPI Datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int

MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED_INT unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double

Table 1 MPI data type corresponding to C

The data type specified in a receive call must match the data type specified in the
send call. However, if different processors store the data type in different ways, MPI is
able to deal with this.

In addition to the data being passed, each message contains a communication
envelope. This contains specific information that enables the messages to be
distinguished. In other words, the envelope provides information on how to match sends
to receives.

9

2. Communications

2.1 Point-to-Point

MPI point-to-point operations typically involve message passing between two,

and only two, different MPI tasks. One task is performing a send operation and the other
task is performing a matching receive operation.

 There are different types of send and receive routines used for different purposes.
For example:

 Synchronous send
 Blocking send / blocking receive
 Non-blocking send / non-blocking receive
 Buffered send
 Combined send/receive
 "Ready" send

 Any type of send routine can be paired with any type of receive routine.
 MPI also provides several routines associated with send - receive operations, such

as those used to wait for a message's arrival or probe to find out if a message has
arrived.

2.1.1 Blocking vs. Non-blocking

 Most of the MPI point-to-point routines can be used in either blocking or non-
blocking mode.

 Blocking:

 A blocking send routine will only "return" after it is safe to modify the
application buffer (your send data) for reuse. Safe means that
modifications will not affect the data intended for the receive task. Safe
does not imply that the data was actually received - it may very well be
sitting in a system buffer.

 A blocking send can be synchronous which means there is handshaking
occurring with the receive task to confirm a safe send.

 A blocking send can be asynchronous if a system buffer is used to hold the
data for eventual delivery to the receive.

 A blocking receive only "returns" after the data has arrived and is ready
for use by the program.

10

 Non-blocking:

 Non-blocking send and receive routines behave similarly - they will return
almost immediately. They do not wait for any communication events to
complete, such as message copying from user memory to system buffer
space or the actual arrival of message.

 Non-blocking operations simply "request" the MPI library to perform the
operation when it is able. The user can not predict when that will happen.

 It is unsafe to modify the application buffer (your variable space) until you
know for a fact the requested non-blocking operation was actually
performed by the library. There are "wait" routines used to do this.

 Non-blocking communications are primarily used to overlap computation
with communication and exploit possible performance gains.

2.2 Collective Communication

Collective communication is defined as communication that involves a group of

processes Figure 2.1. The functions of this type provided by MPI are the following:

 Barrier synchronization across all group members
 Broadcast from one member to all members of a group
 Gather data from all group members to one member
 Scatter data from one member to all members of a group
 A variation on Gather where all members of the group receive the result
 Scatter/Gather data from all members to all members of a group (also called

complete exchange or all-to-all)
 Global reduction operations such as sum, max, min, or user-defined functions,

where the result is returned to all group members and a variation where the result
is returned to only one member

 A combined reduction and scatter operation
 Scan across all members of a group (also called prefix)


2.2.1 All or None

 Collective communication must involve all processes in the scope of a
communicator. All processes are by default, members in the communicator
MPI_COMM_WORLD.

 It is the programmer's responsibility to insure that all processes within a
communicator participate in any collective operations.

11

2.2.2 Types of Collective Operations

 Synchronization - processes wait until all members of the group have reached the
synchronization point.

 Data Movement - broadcast, scatter/gather, all to all.
 Collective Computation (reductions) - one member of the group collects data

from the other members and performs an operation (min, max, add, multiply, etc.)
on that data.

2.2.3 Programming Considerations and Restrictions

 Collective operations are blocking.
 Collective communication routines do not take message tag arguments.
 Collective operations within subsets of processes are accomplished by first

partitioning the subsets into new groups and then attaching the new groups to new
communicators

12

Figure 2.1 Collective communications

13

2.3 MPI Programming:

 The complete MPI specification consists of about 129 calls. However, a
beginning MPI programmer can get by with very few of them (6 to 24). All that is
really required is a way for the processes to exchange data, that is, to be able
to send and receive messages.

The following are basic functions that are used to build most MPI programs.

 All MPI/C programs must include a header file mpi.h.
 All MPI programs must call MPI_INT as the first MPI call, to initialize

themselves.
 Most MPI programs call MPI_COMM_SIZE to get the number of processes that

are running
 Most MPI programs call MPI_COMM_RANK to determine their rank, which is a

number between 0 and size-1.
 Conditional process and general message passing can take place. For example,

using the calls MPI_SEND and MPI_RECV.
 All MPI programs must call MPI_FINALIZE as the last call to an MPI library

routine.

So we can write a number of useful MPI programs using just the following 6 calls
MPI_INIT, MPI_COMM_SIZE, MPI_COMM_RANK, MPI_SEND, MPI_RECV, MPI_
FINALIZE.

2.4 Compiling and Running MPI Applications:

The details of compiling and executing MPI/C protgram depend on the system.
Compiling may be as simple as

g++ -o executable filename.cc –lmpi

However, there may also be a special script or makefile for compiling. Therefore, the
most generic way to compile MPI/C program is using mpicc script provided by some
MPI implementations.

To execute MPI/C program, the most generic way is to use a commonly
provided script mpirun. Roughly speaking, this script determines machine architecture,
which other machines are included in virtual machine and spawns the desired processes
on the other machines. The following command spawns n copies of executable.

14

mpirun -np n executable

2.5 Installing MPICH2

• Get source code from:
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downl
oads

• Unpack downloaded file mpich2.tar.gz:
 tar xfz mpich2.tar.gz

• Create install directory
 mkdir ~/mpich2-install

• Configure: MPICH2:
configure \-prefix=~/mpich2-install |& tee configure.log

• BuilMPICH2:
make |& tee make.log

• Install the MPICH2 commands:
make install |& tee install.log

• Add the bin folder to the PATH
• At Ryerson EE department you must do this:
• Edit .myzshrc and add the following:

PATH=~/mpich2-install/bin:$PATH
export PATH

• This will set the path variable so that all the mpi binaries would be accessible
directly.

• It is necessary for running the programs on all the machines.
• Check that everything is in order at this point by doing:

which mpd
which mpicc
which mpiexec
which mpirun

• Create a file .mpd.conf in home directory:
touch .mpd.conf
chmod 600 .mpd.conf

• Add a secretword to the file:
echo “secretword=mr45-j9z” >.mpd.conf

• Add host names to config file mpd.hosts
• To avoid the password prompt:

cd ~/.ssh
ssh-keygen -t rsa
cp id_rsa.pub authorized_keys

• Start the mpi daemon
mpdboot -n 5 -f mpd.hosts

15

• Test the ring:
mpdtrace

• Test how long it takes a message to circle this ring with:
mpdringtest

• Exit All mpd daemons
mpdallexit

16

3. Net List

Netlist is a text description of the circuit connectivity. It is basically a list of

connectors, a list of instances, and for each instance, a list of the signals connected to the
instance terminals. Attribute information is also present in the netlist. The increasing
complexity of digital signal-processing (DSP) algorithms in embedded applications,
including image and control processing algorithms, requires high processing power to
satisfy the real-time constraints often imposed by such applications. This processing
power can be achieved by parallel processing devices and parallel multiprocessor
architectures. The word netlist in the field of electronic design describes the connectivity
of an electronic design. Netlists usually convey connectivity information and provide
nothing more than instances, nets, and perhaps some attributes. If they express much
more than this, they are usually considered to be a hardware description language such as
Verilog, VHDL, or any one of several specific languages designed for input to
simulators. Netlists are meant to convey connectivity information, and if there is more
data than this basic information in the description, then it may not be just a netlist.

There are several kinds and classes of "netlist":
 1. Physical
 2. Logical
and also, netlists can of two major classes:
 1. Instance based
 2. Net based.
Netlists can also be
 1. Flat
 2. Hierarchical
Hierarchical Netlists can be
 1. Folded
 2. Unfolded.

3.1 Contents and Structure of a Netlist

Most netlists either contain or reference descriptions of the parts or devices used.
Each time a part is used in a netlist, this is called an "instance". Thus, each instance has a
"master", or "definition". These definitions will usually list the connections that can be
made to that kind of device, and some basic properties of that device. These connection
points are called "ports" or "pins", among several other names.
An "instance" could be any form of electronic device. Instances have "ports". In any
consumer electronic device, these ports would be the two (or three!) metal prongs in the
plug. Each port has a name, e.g. "Neutral", "Hot" and "Ground" of plug. Usually, each
instance will have a unique name, so that if you have two instances of the same
descriptions, they can be identified (e.g instanca1, instance2). Besides their names, they
might otherwise be identical.

17

Nets are the "wires" that connect things together in the circuit. There may or may
not be any special attributes associated with the nets in a design, depending on the
particular language the netlist is written in, and that language's features.

Instance based netlists usually provide a list of the instances used in a design.
Along with each instance, either an ordered list of net names are provided, or a list of
pairs provided, of an instance port name, along with the net name to which that port is
connected. In this kind of description, the list of nets can be gathered from the connection
lists, and there is no place to associate particular attributes with the nets themselves. E.g
SPICE

Net-based netlists usually describe all the instances and their attributes, then
describe each net, and say which port they are connected on each instance. This allows
for attributes to be associated with nets. E.g EDIF.

3.2 Hierarchy

In large designs, it is a common practice to split the design into pieces, each piece
becoming a "definition" which can be used as instances in the design. For example, in an
electronic device, the definition not only includes the information about the ports but also
includes a full electrical description of the internals of the device, with the motors,
switches, etc., inside it. A definition that includes no instances would be referred to as
"primitive", or "leaf", among other names; and a definition that includes instances would
be "hierarchical".

A "folded" hierarchy allows a single definition to be represented several times by
instances. An "unfolded" hierarchy will not allow a definition to be used more than once
in the hierarchy. Folded Hierarchies can be extremely compact. A small netlist (for
instance, just a few hundred instances) could describe connections with tens or hundreds
of thousands of instances this way. For example, definition "A" is a simple primitive
memory cell. If definition "B" contains 32 instances of "A", If definition "C" contains 32
instances of "B". Further suppose "D" contains 32 instances of "C", and "E" contains 32
instances of "D". At this point, the design contains a total of 5 definitions (A through E),
and 128 total instances. Yet, E describes a circuit that contains 1,048,576 instances of
"A"!

A "Flat" design is one where only instances of primitives are allowed.
Hierarchical designs can be "exploded" or "flattened" into flat designs via recursive
algorithms. "Explosion" can be a very apt term if the design was highly folded (as in the
previous example). Also, folded designs can be "unfolded", by creating a new copy (with
a new name) of each definition each time it is used. This will generate a much larger
database if the design was highly folded, but will also preserve the hierarchy.

By providing a list of the instance names as one descends a folded hierarchy from
the top definition to the primitives, one can derive a unique hierarchical path to any
instance. These paths can be used to tie a flat design description to a folded hierarchical
version of the same design.

3.3 Netlist Output

Sample output of the first 10 N has been show below.

18

The Value of N=1000
Output[1]
Input[1]
Input[43]
Input[16]
Input[1341]
Output[2]
Input[134]
Input[1423]
Input[869]
Input[2148]
Output[3]
Input[783]
Input[2801]
Input[3799]
Input[1099]
Output[4]
Input[1777]
Input[436]
Input[2793]
Input[2257]
Output[5]
Input[166]
Input[661]
Input[3262]
Input[2742]
Output[6]
Input[3057]
Input[3310]
Input[3838]
Input[878]
Output[7]
Input[1707]
Input[3810]
Input[3358]
Input[3692]
Output[8]
Input[3243]
Input[1804]
Input[2419]
Input[2646]
Output[9]
Input[2399]
Input[2197]
Input[2880]
Input[456]

19

4. Case Study

4.1 FPGA Placement Problem

Programming an FPGA is a process composed of the following steps:

Figure 4.1 – The Compilation Process

First, the VHDL code is compiled into a netlist; this is called the synthesis

process. Second, the netlist is technology-mapped into logic gates. Packing then places
the logic gates into logic blocks. Next, a placement algorithm determines the physical
location of the logic blocks in the FPGA. Finally, routing between the logic block
connects the gates and completes the compilation cycle. Each of these steps is performed
by a separate algorithm, and often by a combination of processes. The place and route
algorithms optimize the placement so that the trace length between the logic units is
minimized. This is necessary in order to meet common requirements, such as timing and
area.

In this project, we will examine and implement a simulated annealing algorithm
to perform placement.

An FPGA can be represented by an array, where each array cell represents a logic
block. In our implementation, for simplicity, we assume that each logic block has a single
element: one logic gate. Each logic block can store a small portion of an equation, or
logic, such as a look-up table. Most common look-up tables in today’s mainstream
FPGAs have four inputs. Studies showed that this is one of the optimum input
sizes[Jas1].

20

After the packing step, a netlist is generated. In our implementation we use a
netlist as an input to the algorithm. The placement is performed for the given netlist, and
the output of the algorithm is theoretically ready for routing.

4.1.1 Importance of Placement

Placement is a combinatorial optimization problem. As the number of logic

blocks grow, the algorithm execution time grows exponentially. The trend in FPGA
development has shown a consistent increase in size, and as a result, a huge increase in
compilation time. Today’s top of the line FPGAs, such as the Xilinx Virtex 5, can take up
to 6 to 8 hours in order to compile a full algorithm (one that takes up the whole FPGA).
This is an extremely long time. As the FPGAs grow further, so will the compile time,
which makes this problem a very good candidate for parallelization.

4.2 Simulated Annealing

4.2.1 Introduction to Simulated Annealing

Simulated Annealing (SA) is an algorithm used on combinatorial optimization
problems. It is generally reliable for finding the global minimum or close to a global
minimum. The name annealing comes from metallurgy, the process of controlled heating
and cooling of a material in order to increase the size of molecular crystals, and reduce
defects. The controlled temperature ensures that you apply energy to the problem and
slowly cool it, in order for the elements to find their optimum arrangement.
 Simulated Annealing is used for a variety of applications, including chemistry,
biology and computer science. In this project, we will use the simulated annealing
algorithm to perform a placement of a netlist onto an array representing an FPGA.

4.2.2 The Algorithm

The SA algorithm is presented below.

S = Random Placement();
T = Initial Temperature();
R = Initial Range;

While (T > 0) { //outer loop
 While (moves per T are not reached) { //inner loop
 Snew = Move(S, R);
 if cost (Snew) < cost (S); {
 S = Snew;
 else
 a = random(0, 1);

21

 If (a < e –Δc /T) {
 S = Snew;
 }
 }
 T = UpdateTemp();
 R = UpdateRange();
}

First, the netlist is randomly placed onto the array. The array, as previously
mentioned, represents an FPGA.

There two loops in this algorithm. The first loop, represents each temperature
step. The temperature in this algorithm plays a very important role, and simulates the
cooling process. The temperature decreases with each step. Commonly, the decrease is
exponential, such as e-x.

Figure 4.2 Exponential Temperature Decrease

The inner loop performs moves on the logic blocks, or array elements, and

calculates the cost. The moves are performed by swapping the location of two logic
blocks. Cost, in this case, is represented by the total length of all the traces required to
connect the netlist. In this algorithm, cost is the focus, and the task is to optimize it by
find the global minimum.

For each switch and cost calculation, the algorithm has to decide if the new
placement and the new cost should be kept or ignored. If the new placement is better then
the previous one, meaning the cost is lower then before, the new placement is kept and
the cost updated.

But, if the new cost is higher then the previous, the algorithm can choose to keep
or to ignore it. This decision is performed by a guessing method. The program generates
a random number, and then compares it to a threshold. If the random number is less then
the threshold, the new, more expensive cost is kept. On the other hand, if the generated
random number is bigger then the threshold, the cost is ignored. In this case, the threshold
is a function of temperature. As the temperature lowered with each step in the outer loop,
the probability of the higher cost being accepted lowers.

This means that at first, when the temperature is high, increasing cost is likely to
be accepted. But, when the temperature lowers, only improvements in the cost will be
kept, and any increases ignored.

22

This method helps reach the global minimum. It is compared to giving an element
more energy to overcome a local minimum, and hopefully reach the global one.

Figure 4.3 Global and Local Minima

 Another variable used is Range. It defines the allowed span when the logic blocks
are to be switched. Range is also a function of temperature. At the beginning, when the
temperature is high, logic blocks can be switched across the whole FPGA. As the
temperature decreases, only block close to each other can be swapped.

Figure 4.4 Long Range: high temperature switching

Figure 4.5 Short Range: high temperature switching

23

4.2.3 Implementation Details

The two dimensional array structure is outline below. The [source] is the output of
the logic block, and the [sink-s] are the inputs of the logic blocks it is connected to. Each
element in the square brackets is expressed in terms of its x and y position in the array.
Essentially, each line in the array represents a trace, with one source (the output of the
logic block), and multiple sinks (logic block inputs).

[source], [sink 1], [sink 2] , [sink 3], [sink 4], [sink 5], [sink 6]

[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6]
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6]
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6]
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6]
.
..
...

 The initial placement of the netlist logic blocks, into the two dimensional array is
completely random.
 The x, y positions represent the physical location in an FPGA.

Figure 4.6 The FPGA Array

4.2.3.1 Cost: Semi Perimeter Length

 The cost is calculated by a method called The Semi Perimeter Length. The
locations of the source and all the sinks are analyzed. For each line in our array, yhe
minimum and maximum is selected, for both, the x and the y axis. Then, the difference
between the minimum and maximum values is calculated and added together, which
results in the final cost.

[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6]
[xpos, ypos], [25, 68], [260, 2], [40, 83], [38, 11], [148, 211], [5, 187]

cost_x = max(x-d1, x-d2, x-d3, x-d4, x-d5, x-d6) - min(x-d1, x-d2, x-d3, x-d4, x-d5, x-d6)
cost_y = max(y-d1, y-d2, y-d3, y-d4, y-d5, y-d6) - min(y-d1, y-d2, y-d3, y-d4, y-d5, y-d6)

24

cost = cost_x + cost_y

This cost function is performed for every line in the array, and every time a logic block
switch is made by the algorithm.

4.2.3.1 Switching Blocks

 In theory, there are two types of logic block switching which can be applied to
this algorithm: displacement and exchange. In our implementation, we will only use cell
exchange. This is because we assume that the FPGA is 100% full and there are no empty
elements, hence we can only swap logic blocks between themselves, which is called
‘exchange’.
 We choose a random x, y array position, and we mark this as the first logic block.
Then we chose the second random x,y position, within the specified range for the step in
question. This is marked as the second logic block. These two logic blocks are then
swapped. This is done by switching all of the sink destinations which are generated by
the two outputs of the logic blocks in question. Then, the whole array is searched, and if
the x,y positions for the two selected logic blocks are encountered, they are updated with
their new array placement.

4.3 Partitioned Placements: Parallelization of the Algorithm

 Four different parallelization techniques were attempted:

1. Sequential Proposals
2. Independent Sets
3. Partitioned Sets
4. Partitioning by Area

The following is an explanation of each with a description of advantages and
disadvantages.

4.3.1 Partitioning By Area

In the original implementation of the algorithm, the range decays exponentially,
since it is a function of temperature. In our implementation, we divide the algorithm into
two phases dependent on the range. Instead of decreasing the range slowly with
temperature, we perform the logic block switching in two different ranges: on the full
array, and on quarter of the array, as is shown in Figure XX. This is because we want to
parallelize the algorithm, into four segments. This method is called Partitioning by Area,
and it is a Fine-Grained Parallel type of move [jas2].

25

The reason we chose to keep the range at full in Phase 1 is because we want to
make the most use out of this phase before we jump into Phase 2.

Figure 4.7 Two Phases of Range and Temperature

4.3.1.1 Phase 1

 Because in Phase 1, the range spans the entire array, the switching can’t be split
onto different machines. This phase is performed only on the main server, or node ‘0’.
The length of this process depends on how many temperature steps we allocate to be
performed in it.
 Clearly, this phase is the bottle neck of the algorithm, but it is necessary since
without it the output placement quality would be significantly degraded. In other words,
the error of the output placement would be very large, when measured against the
sequential, single processor algorithm benchmark.
 4.3.1.2 Phase 2

 In Phase 2, the placement array is divided into four tasks, as is shown in Figure
4.8.

26

Figure 4.8 Workload Divisions for the Partitioning by Area Parallelization

Initially, node(0) has the full array. At the beginning of Phase 2, the full array is

sent to four other machines. The range is now one quarter of the full array, and each
machine can modify one designated part. Every machine will be working independently,
and there will not be any sharing of elements. Logic block swaps are now performed by
each machine only in the designated region. Figure 4.8 shows the four different regions,
with the black mask indicating the range of allowed moves for each node.
 The point of this partition is to allow each node to work individually on
optimizing each quarter, and to achieve better performance. But, even though moves are
limited to the specified range, some nets still cross the boundaries into the other quarters.
The cost function still spans the entire FPGA. As a result, after a certain number of
moves, the calculated cost by each node, has a certain amount of error. In order to
remove this error, each node has to update the entire array. If the updating is done
periodically, the error can be minimized, and the placement can still be optimized by
reaching a close to global solution. The update structure of the array is shown in Figure
4.9 below.

27

Figure 4.9 The Update Step

 In this phase, the number of moves between the updates determines the
performance increase of parallelization, since the updates are very time consuming when
compared to the swapping steps. In order to maximize the performance, the number of
updates needs to be minimized. On the other hand, if we decrease the number of array
updates too much, we might sacrifice the quality of the final placement due to error.

4.3.2 Partitioned Sets

 In this implementation, we create partitioned sets, where each set is a self-
contained problem. One way to partition the sets is to use a partitioning algorithm. The
problem would be partitioned at the start, in such a way as to minimize the connected
nets between the individual sets. The partitioning would be executed at the beginning of
the program and then once during every update between the machines. We tried to find a
suitable implementation of the partitioning algorithm. When we estimated the processing
time for the partitioning and compared it to the execution time of the SA, we realized that
the overhead was too large and decided against this method.

28

Figure 4.10 Workload Division for Partitioned Sets

4.3.3 Sequential Proposals:

Instead of passing different problems to each computer, we can pass the same
array and ask each computer to analyze it and to try and find a solution. During the
update step, all the computers are asked to present their solutions, and the best one is
chosen. In our case, the best solution is the one with the lowest cost. Once the solution is
chosen, the solution array is updated to all the computers using the broadcast function.
This way the overhead is significantly smaller then before. The update step involves
comparing a couple of numbers, and then broadcasting the same array. This is very good
for scalability.
 In the sequential proposals method, each machine performs swaps on the array,
and decides whether or not to keep the swap. Then it moves onto the next swap. During
the update step, each machine has only one array to present for best-comparison. This
method was implemented and tested vigorously.
 The resulting speedup of optimization was not significant. Because the swaps are
randomly chosen, it is difficult to find a swap which actually decreases cost.

for (0 to temp_steps)
 for (0 to computers)
 for (0 : swaps_per_step)
 propose_new_solution()
 decide_if_solution_is_accepted()
 end for
 choose_best_solution()
 end for
end for

29

4.11 The Structure of Sequential Proposals

4.3.4 Independent Sets

 This method is very similar to the one previously described, except for the way
each computer proposes solutions. Each machine receives an array, and proposes a
number of solutions which can be done on that array, without incrementing the swaps.
Out of all the proposed solutions, each machine chooses the best one, and proposes it
during the update step. This way, at every update step, the array changes the most by one
block swap.
 This method was coded and implemented, and testing showed extremely
promising results.
 The figure below shows the speedup with respect to the Independent Sets
parallelization architecture. The cost decreases with each temperature step. Four lines on
the graph represent the cost as it is decreasing on a single machine. Each machine
randomly chooses a block swap. Because of the random factor, the proposed next step is
far from optimal. The bottom line is the algorithm running on four machines. Each
machine proposes a step, and out of the four proposed, only the best one is implemented.
This decreases the cost much faster.

30

for (0 to temp_steps)
 for (0 : swaps_per_step)
 for (0 to computers)
 for (0 to comp_steps)
 propose_new_solution()
 choose_best_solution()
 end for
 end for
 decide_if_solution_is_accepted()
 end for
end for

4.12 Solution Proposals

4.13 Performance of the Sequential Proposals Parallelization

31

5. Variables

We choose three variables for our analysis, and compared how they influence the overall
speedup of the algorithm:

1. number of computers
2. number of computer steps
3. size of array

4.14 Variables

The following is a simple calculation of how three factors influence the number of
proposed solutions:

32

1 computer
1 comp_step
20 temp_steps
5 swap_steps

100 proposed solutions

10 computer
100 comp_step
20 temp_steps
5 swap_steps

100 000 proposed solutions

5.1 Constants

We set temp_steps to 20, and swap_per_step to 5. These were kept constant
throughout all the tests.

5.2 Trials Summary

The following is a list of all the trials we included in the results and analysis:

 Array Size
Number of
Computers Comp_steps

100 1 1

100 1 2

100 1 3

100 1 4

100 1 5

100 1 10

100 1 15

100 1 20

100 1 30

100 1 40

100 1 70

100 1 100

100 1 120

100 1 150

100 1 300

100 2 1

100 2 2

100 2 3

100 2 4

100 2 5

100 2 10

100 2 15

100 2 20

100 2 30

100 2 40

100 2 70

100 2 100

33

100 2 300

100 10 1

100 10 2

100 10 5

100 10 10

100 10 50

 Array
Size

Number of
Computers Comp_steps

2500 1 1

2500 1 5

2500 1 10

2500 1 10

2500 1 50

2500 1 100

2500 1 200

2500 2 1

2500 2 20

2500 2 50

2500 2 100

2500 2 200

2500 5 1

2500 5 20

2500 5 50

2500 5 100

2500 5 200

2500 10 1

2500 10 5

2500 10 20

2500 10 50

2500 10 100

2500 10 200

 Array
Size

Number of
Computers Comp_steps

10000 1 5

34

10000 1 50

10000 1 200

10000 2 20

10000 2 50

10000 2 100

10000 2 200

10000 2 500

10000 2 1000

10000 10 20

10000 10 50

10000 10 200

10000 10 1000

10000 20 20

10000 20 50

10000 20 200

10000 20 1000

35

6. Results

6.1 Array Size: 100

Figure 5.1 shows how the cost decreases with swap steps performed on the
solution array. The three lines represent the cost optimization with one, two and ten
computers. We see that all three trials converge to the same global minimum cost, but the
more computers we use, the faster we get there.

Figure 5.1 Cost Optimization

Figure 5.2 Performances of One and Two Computers

36

Figure 5.3 Performances of One and Ten Computers

 In Figures 5.2 and 5.3 we see show the execution times of one, two and ten
computers. We see that, for this array size, using one computer is always faster then two.
This is because the problem set is too small and the overhead of communication
diminishes any possibility for speedup. When we use ten computers, we see that only
after a certain amount of comp_steps, we reach identical execution time. This means that
we found the lower bound for this set up.

In conclusion, when using ten computers with an array size of 100, we need a
minimum of 50 comp_steps. Generally, this array size is not a good candidate for
parallelization.

6.2 Array Size: 2 500

Similarly as before, in Figure 5.4 we see that as we use more computers the cost
decreases faster.

Figure 5.4 Cost Optimization

37

In the following three figures, we see similar results as before. The more
computers we use, the more parallelization we extract. For this array size, one computer
is also faster then two. But when we use five computers, we show a lower comp_steps
bound of 100, at which point the execution times are equal and everything above is faster
with five computers. With ten computers, the lower bound is also present, but it decreases
down to around 50 comp_steps.

In conclusion, we see that with larger problems sets we get better speedup results.

Figure 5.5 Performances of One and Two Computers

Figure 5.6 Performance of One and Five Computers

38

Figure 5.7 Performances of One and Ten Computers

6.3 Array Size: 100 000

With this array size we achieved the best results. They are outlined in Figures 5.8,
5.9 and 5.10. We see that with the really large comp_steps, such as 1000, the speedup
factor approaches the number of computers. We also show the speedup factor for each
additional computer.

Figure 5.8 Speedup with Two Computers

39

Figure 5.9 Speedup with Ten Computers

Figure 5.10 Speedup with Twenty Computers

 For this array size, we performed an overhead analysis. In Figure 5.11, we show
the total time it takes to execute the algorithm. The processing time is shown in blue, and
the communication between the computers is shown in red. Clearly, as the workload for
each machine increases, the ratio between communication and processing becomes more
favourable for parallelization.

40

Figure 5.11 Communication Overhead

41

7. Conclusion

 We performed and in-depth analysis of various ways of parallelizing the
simulated annealing algorithm. We examined four different parallelization techniques,
and based on preliminary results, we chose the best one and performed a full
implementation.
 We studied three variables: array size, number of computer steps, and number of
computers. We measured the effect each one had on the speedup of the algorithm and
drew conclusions.
 Generally, the larger the problem set, the more suitable it is for parallelization.
We showed that smaller problems sets did not perform well. The array size of 100 was
much faster on one computer then on two.
 Secondly, the more work each computer did, the better the overall speedup was.
When the computer steps were 1000, the speedup was very close to the number of
computers used. The speedup was measured by the amount of time it would take one
machine to generate a certain result as opposed to the number of machines used.
 Thirdly, we discovered that when the number of computer steps is high,
increasing the number of computers used directly influences the speedup and provides
excellent results.
 Finally, we formalized the lower boundary of the speedup for each parameter.
 The table below summorizes the best speedup results for an array size of 100 000
and comp_steps of 1000.

Number of Computers Maximum Speedup
2 1.83
10 8.92
20 17.15

42

8. References

[jas1] “Architecture of Field-Programmable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency”, J. Rose, R.J. Francis, D. Lewis, P. Chow

[jas2] “High-Quality, Deterministic Parallel Placement for FPGAs on Commodity Hardware”,
Altera Corporation, A. Ludwin, V. Betz, K. Padalia, Feb 2008

[jas3] “Strategies for a Massively Parallel Implementation of Simulated Annealing”, F. Baiardi

[jas4] “Parallel Simulated Annealing Algorithms for Cell Placement on Hypercube
Multiprocessors”, P. Banerjee, M.H. Jones, J.S. Sargent

[jas5] “Parallel Algorithms for Chip Placement by Simulated Annealing”, F. Darema, S.
Kirkpatrick, V. A. Norton.

[jas6] “Placement by Simulated Annealing on a multiprocessor”, TCAD, pp. 534-549, Jul 1987

[jas7] “An evaluation of parallel simulated annealing strategies with application to standard cell
placement”, TCAD, vol 16, pp. 398-410, Apr. 1997.

[jas8] “Parallel simulated annealing strategies for VLSI cell placement”, in VLSID, (Bangalore,
India), pp. 37-42, 1996.

[Bas_1].”Advanced Computer Architecture and Parallel Processing”, Hesham El-Rewini,
Mostafa Abo_El_Barr, John Wiley 2005

[Bas_2]. “Parallel Computer Architecture”, David E.Culler, Jaswinder Pal Singh, Anoop Gupta,
Morgan Kaufmann, 2003.

[Bas_3]. "Beginner’s Guide to MPI", Dixie Hisley and Lori Pollock, University of
Delaware,August 2006

[Bas_4]. MPICH2: http://www.mcs.anl.gov/research/projects/mpich2/

[Bas_5]. MPI Forum: http://www.mpi-forum.org

[Bas_6]. Running C/C++ Program in parallel using MPI
http://www.cs.rpi.edu/~seole/doc/mpi.pdf

[Bas_7]. http://www.nada.kth.se/kurser/kth/2D1263/4_lecture10.pdf

[Bas_8].” An introduction to the Message Passing Interface (MPI) using C “,
http://condor.cc.ku.edu/~grobe/docs/intro-MPI-C.shtml

[Bas_9]. “MPI Programming Guide”,
http://www.nersc.gov/vendor_docs/ibm/pe/am106mst02.html

43

[Bas_10]. “MPI: A Message-Passing Interface Standard“
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

[ramya1]. Performance optimization by interacting netlist transformations and placement Stenz,
G.; Riess, B.M.; Rohfleisch, B.; Johannes, F.M.; Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on Volume 19, Issue 3, March 2000 Page(s):350 - 358

[ramya2]. A Gomory-Hu cut tree representation of a netlist partitioning problem Vannelli, A.;
Hadley, S.W.; Circuits and Systems, IEEE Transactions on Volume 37, Issue 9, Sept. 1990
Page(s):1133 - 1139

[ramya3]. Fast batch incremental netlist compilation hierarchical schematics Jones, L.G.;
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on Volume 10,
Issue 7, July 1991 Page(s):922 - 931

[ramya4]. Netlist Instances Definition Instance Design Netlists Folded.
http://www.economicexpert.com/2a/Netlist.html

[ramya5]. Netlist – Wikipedia. http://en.wikipedia.org/wiki/Netlist

[ramya6]. From C to netlists: hardware engineering for software engineers?
Alston, I. Madahar, B. Syst. Dept., BAE SYSTEMS Adv. Technol. Centre, Chelmsford;

[ramya7]. Zero-Change Netlist Transformations: A New Technique for Placement Benchmarking
Kahng, A.B.; Reda, S.; Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on Volume 25, Issue 12, Dec. 2006 Page(s):2806 – 2819

[ramya8]. An efficient eigenvector approach for finding netlist partitions. Hadley, S.W.; Mark,
B.L.; Vannelli, A.; Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on Volume 11, Issue 7, July 1992 Page(s):885 - 892

[ramya9]. An efficient eigenvector-node interchange approach for finding netlist partitions.
Vannelli, A.; Hadley, S.W.; Mark, B.L.; Custom Integrated Circuits Conference, 1991.,
Proceedings of the IEEE 1991 12-15 May 1991 Page(s):28.2/1 - 28.2/4

44

9. Code

The following is code for generating the netlist, performing the simulated annealing
algorithm and implementing and measuring the execution time in MPI.

#include<stdio.h>
#include<stdlib.h>
#define n 1000
#define s 4000

main()
{

 int i,j,p;
 int input[s];
 int output[n];
 int seed;
 double r;
 long int M;
 int y;
 int z;
 double x;

 FILE *fp;
 fp = fopen("c:\\nlist.txt","w");

 seed = 1000;
 M=999;

 printf("\n\n\n");

/* Initialize to 0 */
 for(i=1;i<=s;i++)
 {
 input[i] = 0;
 /* printf("Initialize input[%d] = %d\n", i, input[i]);*/
 }
 for(i=1;i<=n;i++)
 {
 output[i] = 0;
/* printf("Initialise output[%d] = %d\n", i, output[i]);*/
 }
 printf("Logic_in and Logic_out initialized\n");

45

 srand(seed);
 for(i=1;i<=n;++i)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t ", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);

 }
 fprintf(fp,"\n");
 for(i=1;i<=(n/2);i++)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;

46

 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 }
 fprintf(fp,"\n\n");
 for(i=1;i<=(n/5);i++)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 }
 fprintf(fp,"\n\n");
 for(i=1;i<=(n/10);i++)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));

47

 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 }
 fprintf(fp,"\n\n");
 for(i=1;i<=(n/100);i++)
 {

 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);

 }
 fprintf(fp,"\n\n");
 for(i=1;i<=(n/150);i++)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);

48

 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);

 }
 fprintf(fp,"\n\n");
 for(i=1;i<=(n/500);i++)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y =(int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 }
 fprintf(fp,"\n\n");
 for(i=1;i<=(n/1000);i++)
 {
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;

49

 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);

 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);

 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;

50

 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);
 r = ((double)rand()/((double)(RAND_MAX)+(double)(1)));
 x = (r * M);
 y = (int)x;
 z = y+1;
 fprintf(fp,"\nInput[%d]\t", z);

 }
fclose(fp);
}

51

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define MASTER 0
MPI_Status status;

 main(int argc, char **argv)
{

 int i,j,k,l, num;

 int tot =500;
 int dim;
 dim=tot*tot;
 int min = 0;
 int mid = tot/2;
 int max = tot;

 int array[tot][tot];
 int array1[tot][tot];
 int array2[tot][tot];
 int array3[tot][tot];
 int array4[tot][tot];
 double start_time_T; /*Total start time*/
 double finish_time_T; /*Total finish time*/
 double start_time_B; /*Broadcasting start time*/
 double finish_time_B; /*Broadcasting finish time*/
 double B1,B2,U1,U2,U3,U4,U11,U22,U33,U44;
 double start_time_G; /*Gathering start time*/
 double finish_time_G; /*Gathering finish time*/
 double start_time_U2; /*Updating start time */
 double finish_time_U2; /*Updating finish time*/
 double start_time_U1;
 double finish_time_U1;
 double start_time_U3;
 double finish_time_U3;
 double start_time_U4;
 double finish_time_U4;
 double start_time_U;
 double finish_time_U;

 int size,myid,dest,mtype,offset,p,source,nprocess;

52

 /***************start MPI**************************/
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 nprocess=size-1;

/*****************************Master Task************************/
 start_time_T=MPI_Wtime(); /*total start time*/

 if (myid==MASTER)

 {

 //initializing the array with values

 num = 0;
 for (i=0; i<tot; i++)
 {
 for (j=0; j<tot; j++)
 {
 array[i][j] = num;
 num = num + 1;
 // printf("%d\t", array[i][j]);
 }
 // printf("\n");
 }

 // printf("\n\n");

 for (i=0; i<tot; i++)
 {
 for (j=0; j<tot; j++)
 {
 array1[i][j] = array[i][j];
 array2[i][j] = array[i][j];
 array3[i][j] = array[i][j];
 array4[i][j] = array[i][j];
 //printf("%d\t", array[i][j]);
 }
 //printf("\n");
 }

53

 start_time_B=MPI_Wtime(); /*Broadcasting start time*/

 MPI_Bcast(&array[0][0],dim,MPI_INT,0,MPI_COMM_WORLD);
 finish_time_B=MPI_Wtime();

 printf("Sending time=%f\n",finish_time_B-start_time_B);

 B1= finish_time_B-start_time_B;

 MPI_Recv(&array2[0][0],dim,MPI_INT,1,80,MPI_COMM_WORLD,&status);

 }

 else //slaves
 {
 start_time_B=MPI_Wtime();

 MPI_Bcast(&array[0][0],dim,MPI_INT,0,MPI_COMM_WORLD);
 // printf("Received Array\n");

 finish_time_B=MPI_Wtime(); /*boradcasting finish time*/
 printf("Receiving time=%f\n", finish_time_B-start_time_B);

 for (i=0;i<tot;i++)
 {
 //for (j=0;j<tot;j++)
 // printf ("%d ",array[i][j]);
 // printf("\n");
 }

 }
 start_time_U=MPI_Wtime(); /******Total Updating time

54

 /************** computer 1 Send*****************/
 // printf("computer 1 sending");

 if (myid ==1)
 {

 //computer1 broadcasts a part of the array to all the other computers

 for (i=min; i<mid; i++)
 {
 for (j=min; j<mid; j++)
 {
 array1[i][j] = array[i][j];

 // printf("%d\t", array1[i][j]);
 }
 // printf("\n");

 }
 // printf("\n\n");

 start_time_U1=MPI_Wtime(); /*start updating time*/

 MPI_Send(&array1[0][0],dim/4,MPI_INT,2,1,MPI_COMM_WORLD);
 MPI_Send(&array1[0][0],dim/4,MPI_INT,3,1,MPI_COMM_WORLD);
 MPI_Send(&array1[0][0],dim/4,MPI_INT,4,1,MPI_COMM_WORLD);

 MPI_Recv(&array2[0][0],dim/4,MPI_INT,2,2,MPI_COMM_WORLD,&status);
 MPI_Recv(&array3[0][0],dim/4,MPI_INT,3,3,MPI_COMM_WORLD,&status);
 MPI_Recv(&array4[0][0],dim/4,MPI_INT,4,4,MPI_COMM_WORLD,&status);

 // printf("U1=%f\n",U1);

 MPI_Send(&array1[0][0],dim,MPI_INT,0,80,MPI_COMM_WORLD);
 finish_time_U1=MPI_Wtime(); /*finish updating time*/
 U1=start_time_U1-finish_time_U1;

 printf("Updating time 1=%f\n",finish_time_U1 - start_time_U1);

 }

55

 else if (myid==2)
 {

 /************* computer 2 Send***************/
 // printf("computer 2 sending\n");

 //computer2 broadcasts a part of the array to all the other computers
 for (i=min; i<mid; i++)
 {
 for (j=mid; j<max; j++)
 {
 array2[i][j] = array[i][j];

 // printf("%d\t", array2[i][j]);
 }
 // printf("\n");
 }
 // printf("\n\n");

 start_time_U2=MPI_Wtime(); /*start updating time*/

 MPI_Send(&array2[0][0],dim/4,MPI_INT,1,2,MPI_COMM_WORLD);
 MPI_Send(&array2[0][0],dim/4,MPI_INT,3,2,MPI_COMM_WORLD);
 MPI_Send(&array2[0][0],dim/4,MPI_INT,4,2,MPI_COMM_WORLD);

 MPI_Recv(&array1[0][0],dim/4,MPI_INT,1,1,MPI_COMM_WORLD,&status);

 MPI_Recv(&array3[0][0],dim/4,MPI_INT,3,3,MPI_COMM_WORLD,&status);
 MPI_Recv(&array4[0][0],dim/4,MPI_INT,4,4,MPI_COMM_WORLD,&status);
 finish_time_U2=MPI_Wtime();

 finish_time_U2=MPI_Wtime(); /*finish updating time*/

 //U2=start_time_U-finish_time_U;
 //printf("updating time2=%f\n",U2+U22);

 printf("Updating time 2=%f\n",finish_time_U2 - start_time_U2);
 }

 else if (myid==3)
 {

 /****************computer 3 Send**********************/

56

 // printf("computer 3 sending\n");
 //computer3 broadcasts a part of the array to all the other computers

 for (i=mid; i<max; i++)
 {
 for (j=min; j<mid; j++)
 {
 array3[i][j] = array[i][j];

 // printf("%d\t", array[i][j]);
 }
 // printf("\n");
 }
 // printf("\n\n");

 start_time_U3=MPI_Wtime();

 MPI_Send(&array3[0][0],dim/4,MPI_INT,1,3,MPI_COMM_WORLD);
 MPI_Send(&array3[0][0],dim/4,MPI_INT,2,3,MPI_COMM_WORLD);
 MPI_Send(&array3[0][0],dim/4,MPI_INT,4,3,MPI_COMM_WORLD);
 MPI_Recv(&array1[0][0],dim/4,MPI_INT,1,1,MPI_COMM_WORLD,&status);
 MPI_Recv(&array2[0][0],dim/4,MPI_INT,2,2,MPI_COMM_WORLD,&status);
 MPI_Recv(&array4[0][0],dim/4,MPI_INT,4,4,MPI_COMM_WORLD,&status);

 finish_time_U3=MPI_Wtime();
 U3=finish_time_U3-start_time_U3;
 printf("Updating time 3=%f\n",U3);

 }
 else if (myid==4)
 {

 /*************** computer 4 Send**********************/

 // printf("computer 4 sending\n");

 //computer4 broadcasts a part of the array to all the other computer
 for (i=mid; i<max; i++)
 {
 for (j=mid; j<max; j++)
 {
 array4[i][j] = array[i][j];

 // printf("%d\t", array4[i][j]);
 }
 // printf("\n");

57

 }
 // printf("\n\n");

 start_time_U4=MPI_Wtime();

 MPI_Send(&array4[0][0],dim/4,MPI_INT,1,4,MPI_COMM_WORLD);
 MPI_Send(&array4[0][0],dim/4,MPI_INT,2,4,MPI_COMM_WORLD);
 MPI_Send(&array4[0][0],dim/4,MPI_INT,3,4,MPI_COMM_WORLD);

 MPI_Recv(&array1[0][0],dim/4,MPI_INT,1,1,MPI_COMM_WORLD,&status);
 MPI_Recv(&array2[0][0],dim/4,MPI_INT,2,2,MPI_COMM_WORLD,&status);
 MPI_Recv(&array3[0][0],dim/4,MPI_INT,3,3,MPI_COMM_WORLD,&status);
 finish_time_U4=MPI_Wtime();

 U4=finish_time_U4-start_time_U4;
 printf("Updating time 4=%f\n",U4);

 }
 finish_time_U=MPI_Wtime();

/**/

 if (myid==1)
 {

/*****************computer 1 Recev ******************/

 //start_time_U=MPI_Wtime();

 // MPI_Recv(&array2[0][0],2500,MPI_INT,2,2,MPI_COMM_WORLD,&status);
 //MPI_Recv(&array3[0][0],2500,MPI_INT,3,3,MPI_COMM_WORLD,&status);
 //MPI_Recv(&array4[0][0],2500,MPI_INT,4,4,MPI_COMM_WORLD,&status);

 //finish_time_U=MPI_Wtime();

 //U11=start_time_U-finish_time_U;
 //printf("U11=%f\n",U11);

 }

 else if (myid==2)
 {

58

 /***************computer 2 Recev ******************/
 //start_time_U=MPI_Wtime();

 //
MPI_Recv(&array1[0][0],2500,MPI_INT,1,1,MPI_COMM_WORLD,&status);

 //
MPI_Recv(&array3[0][0],2500,MPI_INT,3,3,MPI_COMM_WORLD,&status);

//MPI_Recv(&array4[0][0],2500,MPI_INT,4,4,MPI_COMM_WORLD,&status);
 //finish_time_U=MPI_Wtime();

 //U22=start_time_U-finish_time_U;
 // printf("U22=%f\n",U22);

 }

 if (myid==3)
 {

 /***************computer 3 Recev *******************/
 //start_time_U=MPI_Wtime();

 //
MPI_Recv(&array1[0][0],2500,MPI_INT,1,1,MPI_COMM_WORLD,&status);

//MPI_Recv(&array2[0][0],2500,MPI_INT,2,2,MPI_COMM_WORLD,&status);
 //
MPI_Recv(&array4[0][0],2500,MPI_INT,4,4,MPI_COMM_WORLD,&status);
 //finish_time_U=MPI_Wtime();
 //U33=start_time_U-finish_time_U;
 //printf("U33=%f\n",U33);

 }

 else if (myid ==4)
 {

 /*************** computer 4 Recv ********************/
 //start_time_U=MPI_Wtime();

 //
MPI_Recv(&array1[0][0],2500,MPI_INT,1,1,MPI_COMM_WORLD,&status);

59

//MPI_Recv(&array2[0][0],2500,MPI_INT,2,2,MPI_COMM_WORLD,&status);

//MPI_Recv(&array3[0][0],2500,MPI_INT,3,3,MPI_COMM_WORLD,&status);
 // finish_time_U=MPI_Wtime();
 // U44=start_time_U-finish_time_U;
 //printf("U44=%f\n",U44);

 }

 //MPI_Bcast(&offset,64,MPI_INT,0,MPI_COMM_WORLD);

 /*wait for result from all processors*/
 // for (source=1; source=nprocess;source++);

 {

 // MPI_Recv(&offset,64,MPI_INT,source,2,MPI_COMM_WORLD,&status);
 // MPI_Recv(array,64,MPI_INT,source,2,MPI_COMM_WORLD,&status);
 // printf("source=%d\n",p);

 }

 //now all the computers should have an updated version of the array
 for (i=0; i<tot; i++)
 {
 for (j=0; j<tot; j++)
 {

 printf("%d\t", array[i][j]);
 }

60

 printf("\n");

 }
*/
 /*printf("Updating time 1=%f\n",U1+U11);

 printf("Updating time 2=%f\n",U2+U22);

 printf("Updating time 3=%f\n",U3+U33);

 printf("Updating time 4=%f\n",U4+U44);

 printf("Total Updating Time=%f\n",U1+U2+U3+U4+U11+U22+U33+U44);*/

 finish_time_T=MPI_Wtime(); /*Total finish time*/
 // printf("Total time=%f\n",finish_time_T- start_time_T);
 // printf("source=%d\n",p);
 //printf("nprocess=%d\n",nprocess);
 //ends MPI

 // printf("Total=%f\n",finish_time_U-start_time_U);

 if (myid==0)
 {
 printf("Total Time=%f\n", finish_time_T - start_time_T);
 // printf("Total Updating Time=%f\n",finish_time_U- start_time_U);

 }

 MPI_Finalize();
 // printf("Updating time 1=%f\n",U1+U11);
 //printf("Updating time 2=%f\n",U2+U22);
 //printf("Updating time 3=%f\n",U3+U33);
 //printf("Updating time 4=%f\n",U4+U44);
 //printf("Total Updating Time=%f\n",U1+U2+U3+U4+U11+U22+U33+U44);

 // printf("Total Time=%f\n",finish_time_T - start_time_T);

 // printf("Broadcasting time=%f\n",finish_time_B - start_time_B);

}

61

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <time.h>
#include <sys/time.h>

int print_initial_array = 0; //do you want to print the input array to
the screen?

int ran_num = 251;

int tot_blocks = 10000;
int max = 10;
int mid = 5;

int mid_size = 5;

int computers = 10;
int comp_steps = 50;

int outputs = 1;
int line_size = 1;

int connectivity = 50;

int swap_steps = 5; //swap steps

int array[10000][8];
int array1[10000][8];
int array2[10000][8];
int array3[10000][8];
int array4[10000][8];

int old_array[10000][8];
int para_array[10000][8];
int old_array1[10000][8];

int temp_steps = 20; //temperature steps
int init_temp = 100;
float temp_rate = 0.9;

float time_update = 0.4;

int calc_cost(void);
void printing();
void switch_blocks(int outputs);

62

main()
{

 srand((int)(time(NULL)));
 time_update = time_update + (float)(rand()%40) / (float)100;
 printf("%f time update\n", time_update);
 clock_t testtime1, testtime2;

 testtime1 = clock();

 time_t time1, time2;
 int tot_time;
 time1 = time(NULL);

 clock_t tpart1_start, tpart1_stop, tpart1_tot;
 clock_t tpart2_start, tpart2_stop, tpart2_tot;
 clock_t tpart_para_start, tpart_para_stop;
 float tpart_para_tot;
 float tpart_para_div;

 float tpart_para_tot_sec = 0;
 tpart1_start = clock();

 //setting temperature
 int p,ii;
 int temp[temp_steps];
 temp[0] = init_temp;

 for (ii=1; ii<temp_steps; ii++)
 {
 temp[ii] = (int) (temp[ii-1] * temp_rate);

 //printf("%d\n", temp[ii]);
 }

 int i,j,k;

 double n = 2;
 char line[10];
 char c, a, b, d;

63

 int number;

 outputs = 3;

 FILE *myfile;
 if ((myfile = fopen ("placement.txt", "rt")) == NULL)
 {
 printf("ERROR: COULD NOT OPEN FILE: placement.txt\n");
 }
 else
 {
 //printf("opened file\n");
 }

 FILE *outputfile;
 if ((outputfile = fopen ("outputfile.txt", "w")) == NULL)
 {
 printf("ERROR: COULD NOT OPEN FILE: outputfile.txt\n");
 }
 else
 {
 //printf("opened file\n");
 }

 FILE *updatefile;
 if ((updatefile = fopen ("updatefile.txt", "w")) == NULL)
 {
 printf("ERROR: COULD NOT OPEN FILE: updatefile.txt\n");
 }
 else
 {
 //printf("opened file: updatefile\n");
 }

 FILE *analysisfile;
 if ((analysisfile = fopen ("analysisfile.txt", "a")) == NULL)
 {
 printf("ERROR: COULD NOT OPEN FILE: analysisfile.txt\n");
 }
 else
 {
 //printf("opened file: analysis.txt\n");
 }

 int x_size;
 int y_size;

64

 j=0;

 //aquireing the FPGA size
 while ((c=getc(myfile)) != '\n')
 {
 x_size = atoi(&c);
 }

 while ((c=getc(myfile)) != '\n')
 {
 y_size = atoi(&c);
 }

 //printf("%d, %d\n", x_size, y_size);

 //tot_blocks = x_size * y_size;

 line_size = outputs*2 +2;// this needs to be read from the file!!

// int array[tot_blocks][8];

 //reading the numbers in from file
 for (i = 0; i< tot_blocks; i++)
 {
 //printf("%d: ", i);

 j= 0;

 for (k = 0; k<8; k++)
 {
 fscanf(myfile, "%d", &array[i][k]);
 if (print_initial_array == 1)
 {
 printf("%d, ", array[i][k]);
 }

 }

 if (print_initial_array == 1)
 {
 printf("\n");
 }

 }

 //printf("\n");

65

 int w;

 //printing();

 fclose(myfile); // ******closing the file*******

 //************************MAIN ALGORITHM
 //PART II - placement ******************************* ONE ARRAY
 int cost;
 int t;
 int new_cost;
 int e,g;
 int tryme;
 int updates;
 int pp, ps, para_cost;

 int initial_cost;
 cost = calc_cost();
 initial_cost = cost;
 printf("initial cost: %d\n", cost);

 int new_cost1, new_cost2, new_cost3, new_cost4;

 tpart1_stop = clock();
 tpart1_tot = tpart1_start - tpart1_stop;

 for (g=0; g<temp_steps; g++)
 {
 updates = 0;

 for (e = 0; e < swap_steps; e++)
 {
 //switch_blocks(outputs); //does the switch multiple times
 new_cost = calc_cost();
 old_array = array;

 tpart_para_start = clock();
 for (pp=0; pp< computers; pp++)
//COMPUTER PARALLELIZATION
 {

 for (ps=0; ps< comp_steps; ps++)
 {
 old_array1 = array;
 switch_blocks(outputs); //does the switch multiple
times
 new_cost1 = calc_cost();
 //printf("step:%d:: %d,%d:: %d, %d,
%d\n",e,pp,ps, cost, new_cost, new_cost1);
 if (new_cost1 < new_cost)
 {

66

 new_cost = new_cost1;
 }
 else
 {
 array = old_array1;
 }
 }
 //printf("\n");
 }
 tpart_para_stop = clock();
 //printf("start: %f, stop: %f ---> %f\n",
(float)(tpart_para_start), (float)(tpart_para_stop), tpart_para_tot);
 tpart_para_tot = tpart_para_tot + (float)(tpart_para_stop -
tpart_para_start);

 if (new_cost < cost) //accept lower cost ****
//DECISION***8
 {
 cost = new_cost;
 //printf("%d, p: %d: new_cost:%d\n",g, pp, cost);
 updates++;
 }
 else
 {
 tryme = rand()%100 +1;
 //printf("temp[%d] > %d\n", temp[g], tryme);

 if (temp[g] < tryme) // reject higher cost ****
 {
 array = old_array;
 //printf("%d,p: %d: reject higher cost: %d\n",g,
pp, cost);
 }
 else //accept hight cost *****
 {
 cost = new_cost;
 //printf("%d, p: %d: accept higher cost: %d\n",
g,pp,cost);
 updates++;
 }
 }
 //printf("p: %d, cost: %d\n",pp, cost);
 }
 //printing();
 //printf("t: %d, cost: %d\n", g, cost);
 printf("***t: %d, updates: %d, cost: %d\n", g, updates, cost);
 }

 fprintf(updatefile, "%d\t%d\n", g, updates);
 fprintf(outputfile, "%d\t%d\t%d\t%d\n",g,e, cost, updates);

 //PART III - placement ******************************* FOUR ARRAYS

67

 //tpart_para_tot = tpart_para_start - tpart_para_stop;

 time2 = time(NULL);
 tot_time = time2 - time1;
 testtime2 = clock();

// double time4;

// time4 = time(NULL);
 printf("%d\n", time2);

 //printing to screen;
 printf("initial cost: %d\nfinal cost: %d <-------------\ndiff:
%d\npercentage improvement:%d\n", initial_cost, cost, initial_cost -
cost, (initial_cost - cost)/initial_cost);
 printf("total time (time_t): %d\n", tot_time);

 //printing to file;
 fprintf(outputfile, "initial cost: %d\nfinal cost: %d\ndiff:
%d\npercentage improvement:%d\n", initial_cost, cost, initial_cost -
cost,((double)((initial_cost - cost)/initial_cost))*100);
 fprintf(outputfile, "total blocks: %d\n", tot_blocks);
 fprintf(outputfile, "swap steps: %d\n", swap_steps);
 fprintf(outputfile, "temp steps: %d\n", temp_steps);
 fprintf(outputfile, "total time: %d\n", tot_time);

 fprintf(outputfile, "tot_blocks: %d\n", tot_blocks);
 fprintf(outputfile, "connectivity: %d\n", connectivity);

 fprintf(outputfile, "ran_num: %d\n", ran_num);

//TIME CALCULATIONS

 float tot_time_sec, time_parallel_1, time_parallel_2,
time_update_tot;

68

 tot_time_sec = (float)(testtime2 - testtime1) /
(float)(CLOCKS_PER_SEC) ;

 tpart_para_tot_sec = (float)(tpart_para_tot) /
(float)(CLOCKS_PER_SEC);
 tpart_para_div = tpart_para_tot / computers / CLOCKS_PER_SEC;

 time_update_tot = time_update * temp_steps * swap_steps;

 time_parallel_1 = tot_time_sec - tpart_para_tot_sec;
 time_parallel_2 = time_parallel_1 + tpart_para_div +
time_update_tot;

 printf("total time (from clocks): %f <------\n", tot_time_sec);

 printf("tpart_para_tot: %f\n", tpart_para_tot);
 printf("tpart_para_tot_sec : %f\n", tpart_para_tot_sec);
 printf("tpart_para_div : %f\n", tpart_para_div);
 printf("time_update_tot : %f\n", time_update_tot);
 printf("time_parallel_1 : %f\n", time_parallel_1);
 printf("time_parallel_2 : %f <------\n", time_parallel_2);

 fprintf(outputfile, "\n\ntot_blocks, computers, comp_steps,
temp_steps, temp_rate, swap_steps, connectivity, tot_time_sec,
time_parallel_2, cost\n%d\t%d\t%d\t%d\t%f%d\t%d\t%f\t%f\t%d\t%d\t%f\n",
tot_blocks, computers, comp_steps, temp_steps, temp_rate, swap_steps,
connectivity, tot_time_sec, time_parallel_2, initial_cost, cost,
time_update);

 fprintf(analysisfile,
"%d\t%d\t%d\t%d\t%f%d\t%d\t%f\t%f\t%d\t%d\t%f\t%f\n", tot_blocks,
computers, comp_steps, temp_steps, temp_rate, swap_steps, connectivity,
tot_time_sec, time_parallel_2, initial_cost, cost, time_update,
tpart_para_tot_sec);

 fclose(outputfile);
 fclose(analysisfile);

}

//*************************END MAIN*******************************

69

int calc_cost()
{
 //calculating cost
 int cost = 0;

 int minx,maxx, miny, maxy,i, k, j;
 int tot_cost = 0;

 for (i = 0; i < tot_blocks; i++)
 {
 j = 0;

 minx = maxx = array[i][j];
 miny = maxy = array[i][j+1];

 // printf("%d, %d\n", array[i][j], array[i][j+1]);

 for(k=0; k < (outputs); k++)
 {
 j = j+2;

 if ((array[i][j] != 0) && (array[i][j+1] != 0))
 {

 if (array[i][j] < minx)
 {
 minx = array[i][j];

 }
 if (array[i][j] > maxx)
 {
 maxx = array[i][j];
 //printf("%d:%d\n",j, maxx);

 }
 if (array[i][j+1] < miny)
 {
 miny = array[i][j+1];
 }
 if (array[i][j+1] > maxy)
 {
 maxy = array[i][j+1];
 }
 }

 }

 //printf("%d: %d, %d, %d, %d --- ",i, minx, maxx, miny, maxy);
 cost = (maxx - minx) + (maxy - miny);
 tot_cost = tot_cost + cost;

 //printf("%d: line_cost=%d\n",i, cost);

 }
 //printf("\n");

70

 return(tot_cost);

}

void printing()
{
 int w,j;

 //printing the array to the screen
 for (w = 0; w < tot_blocks; w++)
 {
 printf("%d: ",w);

 for (j = 0; j < line_size; j++)
 {

 printf("%d ", array[w][j]);
 }
 printf("\n");

 }
}

//switching blocks function

void switch_blocks(int outputs)
{

 //switching two blocks

 int from, to;
 int tempx,tempy;
 int s, t;
 int i, j, k;
 int temp, f;

 //mod to use the range function!!!! *****
 from = (rand()%tot_blocks) ;
 to = (rand()%tot_blocks);

71

 //printf("from:%d, to:%d\n", from,to);

 for (f=2; f<8; f++)
 {
 //printf("%d, ",f);

 temp=array[from][f];
 //printf("%d\n", array[to][f]);

 array[from][f] = array[to][f];
 array[to][f]=temp;
 }

 //temp1 = array[from][0];
 //temp2 = array[from][1];
 //array[from][0] = array[to][0];
 //array[from][1] = array[to][1];
 //array[to][0] = tempx;
 //array[to][1] = tempy;

 for (i = 0; i < tot_blocks; i++)
 {
 j = 2;

 // printf("%d, %d\n", array[i][j], array[i][j+1]);

 for(k=0; k < (outputs); k++)
 {
 //printf("i:%d, j=%d, k=%d\n", i, j, k);

 if ((array[i][j] == array[from][0]) && (array[i][j+1] ==
array[from][1]))
 {
 array[i][j] = array[to][0];
 array[i][j+1] = array[to][1];
 //printf("i = %d, here: (%d, %d) = (%d, %d)\n",i,
array[i][j], array[i][j+1], array[from][0], array[from][1]);

 }

 else if ((array[i][j] == array[to][0]) && (array[i][j+1] ==
array[to][1]))
 {
 array[i][j] = array[from][0];
 array[i][j+1] = array[from][1];
 }

 j = j+2;

 }
 }
}

