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Abstract 
 
Combinatorial optimization problems are common and inherently posses exponentially 
growing execution times, which often do not lead to global minimums. One common 
such problem is the placement algorithm in an FPGA. In order for a netlist to be mapped 
onto an FPGA such that the trace lengths between all the logic blocks are minimized, a 
suitable physical location has to be determined for each logic block. In this project we 
implement the simulated annealing algorithm on a placement problem. In order to 
improve performance, we parallelize the algorithm, and run it on a number of machines 
using MPI. We examine four different parallelization techniques. Based on preliminary 
results, we chose the best one, Independent Sets [jas2] , and fully implemented it. As a 
result, we achieved speedups very close to the number of machines used.  
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1. Message Passing Architecture 
 

1.1 Introduction 
 

Message passing systems provides alternative methods for communication and 
movement of data among multiprocessors. A message passing system typically combines 
local memory and the processors at each node of the interconnection network. There is no 
global memory so it is necessary to move data from one local memory to another by 
means of message passing. This is typically done by send/receive pairs of commands, 
which is written into the application software. Each processor has access to its own local 
memory and can communicate with other processors using the interconnection network 
as shown in Figure 1.1. These systems eventually gave way to internet-connected systems 
where the processor/memory nodes are cluster nodes, servers, clients, or nodes in grater 
grid. 

 
 
 

Figure 1.1   Message Passing Systems 
 

 

1.2 Introduction to Message Passing 
 

A message passing architecture is used to communicate data among a set of  
processors without the need for global memory. The basis for the scheme is that each 
processor has its own local memory and communicates with other processors using 
messages. The elimination of the need for a large global memory together with its 
synchronization requirement, gives message passing schemes an edge over shared 
memory schemes. 

 
Interconnection Network 

P1            M1 
 

P2            M2 Pn          Mn 
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Figure 1 shows the main components of the message passing architecture. There 

are n nodes in the figure. A node Ni consists of processor Pi and a local memory Mi. Each 
processor has its own address space. Nodes communicate with each other by links 
(external link) and via an interconnection network. Two important factors must be 
considered in designing message passing interconnection networks: link bandwidth and 
latency. The link bandwidth is defined as the number of bits that can be transmitted per 
unit of time (bits/s). Network latency is defined as the time to complete a message 
transfer through the network. 

Traditionally, software has been written for serial computation to be run on a 
single computer having a single Central Processing Unit (CPU). A problem is broken into 
a discrete series of instructions. Instructions are executed one after another .Only one 
instruction may execute at any moment in time Figure 1.2. 
 

 
 
 

Figure 1.2 Serial computation  
 
 

In executing a given application program using message passing, the program is 
divided into concurrent processors; each is executed on a separate processor Figure 1.3. If 
the number of processes is larger than the number of the number of processors, then more 
than one process will have to be executed on a processor in a time-shard fashion 
.processes running on a given processor use internal channels to exchange messages 
among themselves. Processes running on different processors use the external channels to 
exchange messages. Data exchanged among processors cannot be shared; it is rather 
copied (using send/receive messages). An important advantage of this form of data 
exchange is the elimination of the need for synchronization constructs, such as 
semaphores, which result in performance improvement. In addition, a message passing 
scheme offers flexibility scalable in accommodating a large number of processors in 
addition to being readily scalable. 
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Figure 1.3 Parallel computation 
 

1.3 Advantages of Parallel Programming 
 
 
 Need to solve larger problems  

 more memory intensive  
 more computation  
 more data intensive  

 Parallel programming provides  
 more CPU resources  
 more memory resources  
 solve problems that were not possible with serial     program  
 solve problems more quickly 

 

1.4 Parallel Programming goals 
 

 Reduce execution time : 
 computation time  
 idle time - waiting for data from other processors  
 communication time - time the processors take to send and receive messages 

 Load Balancing  
 divide the work equally among the available processors 
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 Where possible - overlap communication and computation  
 Many problems scale well to only a limited number of processors  

 
 

1.5 Message: 
 

A message is made up of an array of elements of a particular MPI data type. The 
basic MPI data types correspond to the basic C or Fortran data types. The data types 
corresponding to   C   are tabulated in Table 1. 
 
 

MPI Datatype C datatype 
MPI_CHAR signed char 
MPI_SHORT signed short int 
MPI_INT signed int 

MPI_LONG signed long int 
MPI_UNSIGNED_CHAR unsigned char 
MPI_UNSIGNED_SHORT unsigned short int 
MPI_UNSIGNED_INT unsigned int 
MPI_UNSIGNED_LONG unsigned long int 
MPI_FLOAT float 
MPI_DOUBLE double 
MPI_LONG_DOUBLE long double 

 
 

Table 1 MPI data type corresponding to C 
 

The data type specified in a receive call must match the data type specified in the 
send call. However, if different processors store the data type in different ways, MPI is 
able to deal with this. 

In addition to the data being passed, each message contains a communication 
envelope. This contains specific information that enables the messages to be 
distinguished. In other words, the envelope provides information on how to match sends 
to receives.   
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2. Communications 
 

2.1 Point-to-Point 
  
MPI point-to-point operations typically involve message passing between two, 

and only two, different MPI tasks. One task is performing a send operation and the other 
task is performing a matching receive operation. 

 There are different types of send and receive routines used for different purposes. 
For example:  

 Synchronous send  
 Blocking send / blocking receive  
 Non-blocking send / non-blocking receive  
 Buffered send  
 Combined send/receive  
 "Ready" send  

 Any type of send routine can be paired with any type of receive routine.  
 MPI also provides several routines associated with send - receive operations, such 

as those used to wait for a message's arrival or probe to find out if a message has 
arrived.  

 

2.1.1 Blocking vs. Non-blocking 

 Most of the MPI point-to-point routines can be used in either blocking or non-
blocking mode.  

 Blocking:  

 A blocking send routine will only "return" after it is safe to modify the 
application buffer (your send data) for reuse. Safe means that 
modifications will not affect the data intended for the receive task. Safe 
does not imply that the data was actually received - it may very well be 
sitting in a system buffer.  

 A blocking send can be synchronous which means there is handshaking 
occurring with the receive task to confirm a safe send.  

 A blocking send can be asynchronous if a system buffer is used to hold the 
data for eventual delivery to the receive.  

 A blocking receive only "returns" after the data has arrived and is ready 
for use by the program.  
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 Non-blocking:  

 Non-blocking send and receive routines behave similarly - they will return 
almost immediately. They do not wait for any communication events to 
complete, such as message copying from user memory to system buffer 
space or the actual arrival of message.  

 Non-blocking operations simply "request" the MPI library to perform the 
operation when it is able. The user can not predict when that will happen.  

 It is unsafe to modify the application buffer (your variable space) until you 
know for a fact the requested non-blocking operation was actually 
performed by the library. There are "wait" routines used to do this.  

 Non-blocking communications are primarily used to overlap computation 
with communication and exploit possible performance gains.  

 

2.2 Collective Communication 
 
Collective communication is defined as communication that involves a group of 

processes Figure 2.1. The functions of this type provided by MPI are the following: 

 Barrier synchronization across all group members    
 Broadcast from one member to all members of a group     
 Gather data from all group members to one member     
 Scatter data from one member to all members of a group       
 A variation on Gather where all members of the group receive the result   
 Scatter/Gather data from all members to all members of a group (also called 

complete exchange or all-to-all)     
 Global reduction operations such as sum, max, min, or user-defined functions, 

where the result is returned to all group members and a variation where the result 
is returned to only one member   

 A combined reduction and scatter operation   
 Scan across all members of a group (also called prefix)   
  

2.2.1 All or None  

 Collective communication must involve all processes in the scope of a 
communicator. All processes are by default, members in the communicator 
MPI_COMM_WORLD.  

 It is the programmer's responsibility to insure that all processes within a 
communicator participate in any collective operations.  
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2.2.2 Types of Collective Operations  

 Synchronization - processes wait until all members of the group have reached the 
synchronization point.  

 Data Movement - broadcast, scatter/gather, all to all.  
 Collective Computation (reductions) - one member of the group collects data 

from the other members and performs an operation (min, max, add, multiply, etc.) 
on that data.  

2.2.3 Programming Considerations and Restrictions  

 Collective operations are blocking.  
 Collective communication routines do not take message tag arguments.  
 Collective operations within subsets of processes are accomplished by first 

partitioning the subsets into new groups and then attaching the new groups to new 
communicators   
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Figure 2.1 Collective communications 
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2.3 MPI Programming: 
 
 
  The complete MPI specification consists of about 129 calls. However, a 
beginning MPI programmer can get by with very few of them (6 to 24). All that is 
really required is a way for the processes to exchange data, that is, to be able 
to send and receive messages. 
 
The following are basic functions that are used to build most MPI programs. 
 

 All MPI/C programs must include a header file mpi.h. 
 All MPI programs must call MPI_INT as the first MPI call, to initialize 

themselves. 
 Most MPI programs call MPI_COMM_SIZE to get the number of processes that 

are running 
 Most MPI programs call MPI_COMM_RANK to determine their rank, which is a 

number between 0 and size-1. 
 Conditional process and general message passing can take place. For example, 

using the calls MPI_SEND and MPI_RECV. 
 All MPI programs must call MPI_FINALIZE as the last call to an MPI library 

routine. 
 
So we can write a number of useful MPI programs using just the following 6 calls 
MPI_INIT, MPI_COMM_SIZE, MPI_COMM_RANK, MPI_SEND, MPI_RECV, MPI_ 
FINALIZE. 
 

2.4 Compiling and Running MPI Applications: 
 
 
The details of compiling and executing MPI/C protgram depend on the system. 
Compiling may be as simple as 
 

g++ -o executable filename.cc –lmpi 
 
However, there may also be a special script or makefile for compiling. Therefore, the 
most generic way to compile MPI/C program is using mpicc script provided by some 
MPI implementations.   

To execute MPI/C program, the most generic way is to use a commonly 
provided script mpirun. Roughly speaking, this script determines machine architecture, 
which other machines are included in virtual machine and spawns the desired processes 
on the other machines. The following command spawns n copies of executable. 
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mpirun -np n executable 
 

 

2.5  Installing MPICH2 
 
 

• Get source code from: 
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downl
oads 

• Unpack  downloaded  file mpich2.tar.gz: 
 tar xfz mpich2.tar.gz 

•  Create  install  directory 
 mkdir ~/mpich2-install 

•  Configure: MPICH2: 
configure \-prefix=~/mpich2-install |& tee configure.log 

• BuilMPICH2: 
make |& tee make.log 

• Install the  MPICH2  commands: 
make install |& tee install.log 

• Add the bin folder to the PATH 
• At Ryerson EE department you must do this: 
• Edit .myzshrc and add the following: 

PATH=~/mpich2-install/bin:$PATH 
export PATH 

• This will set the path variable so that all the mpi binaries would be accessible 
directly.  

• It is necessary for running the programs on all the machines. 
• Check that everything is in order at this point by doing: 

which mpd 
which mpicc 
which mpiexec 
which mpirun 

• Create a file .mpd.conf in home directory: 
touch .mpd.conf 
chmod 600 .mpd.conf 

• Add a secretword to the file: 
echo “secretword=mr45-j9z” >.mpd.conf 

• Add host names to config file mpd.hosts 
• To avoid the password prompt: 

cd ~/.ssh 
ssh-keygen -t rsa 
cp id_rsa.pub authorized_keys 

• Start the mpi daemon 
mpdboot -n 5 -f mpd.hosts 
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• Test the ring: 
mpdtrace 

• Test how long it takes a message to circle this ring with: 
mpdringtest 

• Exit All mpd daemons 
mpdallexit 
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3. Net List  
 
 
Netlist is a text description of the circuit connectivity. It is basically a list of 

connectors, a list of instances, and for each instance, a list of the signals connected to the 
instance terminals. Attribute information is also present in the netlist. The increasing 
complexity of digital signal-processing (DSP) algorithms in embedded applications, 
including image and control processing algorithms, requires high processing power to 
satisfy the real-time constraints often imposed by such applications. This processing 
power can be achieved by parallel processing devices and parallel multiprocessor 
architectures. The word netlist in the field of electronic design describes the connectivity 
of an electronic design. Netlists usually convey connectivity information and provide 
nothing more than instances, nets, and perhaps some attributes. If they express much 
more than this, they are usually considered to be a hardware description language such as 
Verilog, VHDL, or any one of several specific languages designed for input to 
simulators. Netlists are meant to convey connectivity information, and if there is more 
data than this basic information in the description, then it may not be just a netlist. 

 
There are several kinds and classes of "netlist": 
   1. Physical 
   2. Logical  
and also, netlists can of two major classes: 
   1. Instance based 
   2. Net based.  
Netlists can also be 
   1. Flat 
   2. Hierarchical  
Hierarchical Netlists can be 
   1. Folded 
   2. Unfolded. 

3.1 Contents and Structure of a Netlist 
 

Most netlists either contain or reference descriptions of the parts or devices used. 
Each time a part is used in a netlist, this is called an "instance". Thus, each instance has a 
"master", or "definition". These definitions will usually list the connections that can be 
made to that kind of device, and some basic properties of that device. These connection 
points are called "ports" or "pins", among several other names. 
An "instance" could be any form of electronic device. Instances have "ports". In any 
consumer electronic device, these ports would be the two (or three!) metal prongs in the 
plug. Each port has a name, e.g. "Neutral", "Hot" and "Ground" of plug. Usually, each 
instance will have a unique name, so that if you have two instances of the same 
descriptions, they can be identified (e.g instanca1, instance2 ). Besides their names, they 
might otherwise be identical. 
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Nets are the "wires" that connect things together in the circuit. There may or may 
not be any special attributes associated with the nets in a design, depending on the 
particular language the netlist is written in, and that language's features. 

Instance based netlists usually provide a list of the instances used in a design. 
Along with each instance, either an ordered list of net names are provided, or a list of 
pairs provided, of an instance port name, along with the net name to which that port is 
connected. In this kind of description, the list of nets can be gathered from the connection 
lists, and there is no place to associate particular attributes with the nets themselves. E.g 
SPICE 

Net-based netlists usually describe all the instances and their attributes, then 
describe each net, and say which port they are connected on each instance. This allows 
for attributes to be associated with nets. E.g EDIF. 

3.2 Hierarchy 
 

In large designs, it is a common practice to split the design into pieces, each piece 
becoming a "definition" which can be used as instances in the design. For example, in an 
electronic device, the definition not only includes the information about the ports but also 
includes a full electrical description of the internals of the device, with the motors, 
switches, etc., inside it. A definition that includes no instances would be referred to as 
"primitive", or "leaf", among other names; and a definition that includes instances would 
be "hierarchical". 

A "folded" hierarchy allows a single definition to be represented several times by 
instances. An "unfolded" hierarchy will not allow a definition to be used more than once 
in the hierarchy. Folded Hierarchies can be extremely compact. A small netlist (for 
instance, just a few hundred instances) could describe connections with tens or hundreds 
of thousands of instances this way. For example, definition "A" is a simple primitive 
memory cell. If definition "B" contains 32 instances of "A", If definition "C" contains 32 
instances of "B". Further suppose "D" contains 32 instances of "C", and "E" contains 32 
instances of "D". At this point, the design contains a total of 5 definitions (A through E), 
and 128 total instances. Yet, E describes a circuit that contains 1,048,576 instances of 
"A"! 

A "Flat" design is one where only instances of primitives are allowed. 
Hierarchical designs can be "exploded" or "flattened" into flat designs via recursive 
algorithms. "Explosion" can be a very apt term if the design was highly folded (as in the 
previous example). Also, folded designs can be "unfolded", by creating a new copy (with 
a new name) of each definition each time it is used. This will generate a much larger 
database if the design was highly folded, but will also preserve the hierarchy. 

By providing a list of the instance names as one descends a folded hierarchy from 
the top definition to the primitives, one can derive a unique hierarchical path to any 
instance. These paths can be used to tie a flat design description to a folded hierarchical 
version of the same design.  

3.3 Netlist Output  
 
Sample output of the first 10 N has been show below. 
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The Value of N=1000 
Output[1] 
Input[1]   
Input[43]  
Input[16]  
Input[1341]  
Output[2] 
Input[134]   
Input[1423]  
Input[869]  
Input[2148]  
Output[3] 
Input[783]   
Input[2801]  
Input[3799]  
Input[1099]  
Output[4] 
Input[1777]   
Input[436]  
Input[2793]  
Input[2257]  
Output[5] 
Input[166]   
Input[661]  
Input[3262]  
Input[2742]  
Output[6] 
Input[3057]   
Input[3310]  
Input[3838]  
Input[878]  
Output[7] 
Input[1707]   
Input[3810]  
Input[3358]  
Input[3692]  
Output[8] 
Input[3243]   
Input[1804]  
Input[2419]  
Input[2646]  
Output[9] 
Input[2399]   
Input[2197]  
Input[2880]  
Input[456]  
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4. Case Study  
 

4.1 FPGA Placement Problem 
 

Programming an FPGA is a process composed of the following steps: 
 

 
Figure 4.1 – The Compilation Process 

 
First, the VHDL code is compiled into a netlist; this is called the synthesis 

process. Second, the netlist is technology-mapped into logic gates. Packing then places 
the logic gates into logic blocks. Next, a placement algorithm determines the physical 
location of the logic blocks in the FPGA. Finally, routing between the logic block 
connects the gates and completes the compilation cycle. Each of these steps is performed 
by a separate algorithm, and often by a combination of processes. The place and route 
algorithms optimize the placement so that the trace length between the logic units is 
minimized. This is necessary in order to meet common requirements, such as timing and 
area. 

In this project, we will examine and implement a simulated annealing algorithm 
to perform placement.     

An FPGA can be represented by an array, where each array cell represents a logic 
block. In our implementation, for simplicity, we assume that each logic block has a single 
element: one logic gate. Each logic block can store a small portion of an equation, or 
logic, such as a look-up table. Most common look-up tables in today’s mainstream 
FPGAs have four inputs. Studies showed that this is one of the optimum input 
sizes[Jas1]. 
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After the packing step, a netlist is generated. In our implementation we use a 
netlist as an input to the algorithm. The placement is performed for the given netlist, and 
the output of the algorithm is theoretically ready for routing.  

 

4.1.1 Importance of Placement 
 
Placement is a combinatorial optimization problem. As the number of logic 

blocks grow, the algorithm execution time grows exponentially. The trend in FPGA 
development has shown a consistent increase in size, and as a result, a huge increase in 
compilation time. Today’s top of the line FPGAs, such as the Xilinx Virtex 5, can take up 
to 6 to 8 hours in order to compile a full algorithm (one that takes up the whole FPGA). 
This is an extremely long time. As the FPGAs grow further, so will the compile time, 
which makes this problem a very good candidate for parallelization.  

 

4.2 Simulated Annealing 
 

4.2.1 Introduction to Simulated Annealing   
 

Simulated Annealing (SA) is an algorithm used on combinatorial optimization 
problems. It is generally reliable for finding the global minimum or close to a global 
minimum. The name annealing comes from metallurgy, the process of controlled heating 
and cooling of a material in order to increase the size of molecular crystals, and reduce 
defects. The controlled temperature ensures that you apply energy to the problem and 
slowly cool it, in order for the elements to find their optimum arrangement.  
 Simulated Annealing is used for a variety of applications, including chemistry, 
biology and computer science. In this project, we will use the simulated annealing 
algorithm to perform a placement of a netlist onto an array representing an FPGA.  

4.2.2 The Algorithm   
  

The SA algorithm is presented below.  
 
S = Random Placement(); 
T = Initial Temperature(); 
R = Initial Range; 
 
While ( T > 0 ) {    //outer loop 
        While (moves per T are not reached) {  //inner loop 
                Snew = Move(S, R); 
                if cost (Snew) < cost (S); { 
                        S = Snew; 
                else      
                        a = random(0, 1); 
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                        If (a < e –Δc /T) { 
                            S = Snew; 
                        } 
                } 
                T = UpdateTemp(); 
                R = UpdateRange(); 
} 
 

First, the netlist is randomly placed onto the array. The array, as previously 
mentioned, represents an FPGA.  
 

There two loops in this algorithm. The first loop, represents each temperature 
step. The temperature in this algorithm plays a very important role, and simulates the 
cooling process. The temperature decreases with each step. Commonly, the decrease is 
exponential, such as e-x.  
 

 
Figure 4.2 Exponential Temperature Decrease 

 
The inner loop performs moves on the logic blocks, or array elements, and 

calculates the cost. The moves are performed by swapping the location of two logic 
blocks. Cost, in this case, is represented by the total length of all the traces required to 
connect the netlist. In this algorithm, cost is the focus, and the task is to optimize it by 
find the global minimum.  

For each switch and cost calculation, the algorithm has to decide if the new 
placement and the new cost should be kept or ignored. If the new placement is better then 
the previous one, meaning the cost is lower then before, the new placement is kept and 
the cost updated.  

But, if the new cost is higher then the previous, the algorithm can choose to keep 
or to ignore it. This decision is performed by a guessing method. The program generates 
a random number, and then compares it to a threshold. If the random number is less then 
the threshold, the new, more expensive cost is kept. On the other hand, if the generated 
random number is bigger then the threshold, the cost is ignored. In this case, the threshold 
is a function of temperature. As the temperature lowered with each step in the outer loop, 
the probability of the higher cost being accepted lowers.  

This means that at first, when the temperature is high, increasing cost is likely to 
be accepted. But, when the temperature lowers, only improvements in the cost will be 
kept, and any increases ignored.  
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This method helps reach the global minimum. It is compared to giving an element 
more energy to overcome a local minimum, and hopefully reach the global one.  

 

 
Figure 4.3 Global and Local Minima 

 
 Another variable used is Range. It defines the allowed span when the logic blocks 
are to be switched. Range is also a function of temperature. At the beginning, when the 
temperature is high, logic blocks can be switched across the whole FPGA. As the 
temperature decreases, only block close to each other can be swapped.  
 
 

 
Figure 4.4 Long Range: high temperature switching 

 

 
Figure 4.5 Short Range: high temperature switching 
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4.2.3 Implementation Details 
    

The two dimensional array structure is outline below. The [source] is the output of 
the logic block, and the [sink-s] are the inputs of the logic blocks it is connected to. Each 
element in the square brackets is expressed in terms of its x and y position in the array. 
Essentially, each line in the array represents a trace, with one source (the output of the 
logic block), and multiple sinks (logic block inputs). 
 
[source       ], [sink 1      ], [sink 2]       , [sink 3      ], [sink 4       ], [sink 5       ], [sink 6       ] 
 
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6] 
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6] 
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6] 
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6] 
. 
.. 
... 
 
 The initial placement of the netlist logic blocks, into the two dimensional array is 
completely random. 
 The x, y positions represent the physical location in an FPGA.  

 
Figure 4.6 The FPGA Array 

    

4.2.3.1 Cost: Semi Perimeter Length 

 
 The cost is calculated by a method called The Semi Perimeter Length. The 
locations of the source and all the sinks are analyzed. For each line in our array, yhe 
minimum and maximum is selected, for both, the x and the y axis. Then, the difference 
between the minimum and maximum values is calculated and added together, which 
results in the final cost.  
 
[xpos, ypos], [x-d1, y-d1], [x-d2, y-d2], [x-d3, y-d3], [x-d4, y-d4], [x-d5, y-d5], [x-d6, y-d6] 
[xpos, ypos], [25, 68], [260, 2], [40, 83], [38, 11], [148, 211], [5, 187] 
 
cost_x = max(x-d1, x-d2, x-d3, x-d4, x-d5, x-d6) -  min(x-d1, x-d2, x-d3, x-d4, x-d5, x-d6)  
cost_y = max(y-d1, y-d2, y-d3, y-d4, y-d5, y-d6) -  min(y-d1, y-d2, y-d3, y-d4, y-d5, y-d6)  
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cost = cost_x + cost_y 
 
This cost function is performed for every line in the array, and every time a logic block 
switch is made by the algorithm. 
 

4.2.3.1 Switching Blocks 

 
 In theory, there are two types of logic block switching which can be applied to 
this algorithm: displacement and exchange. In our implementation, we will only use cell 
exchange. This is because we assume that the FPGA is 100% full and there are no empty 
elements, hence we can only swap logic blocks between themselves, which is called 
‘exchange’. 
 We choose a random x, y array position, and we mark this as the first logic block. 
Then we chose the second random x,y position, within the specified range for the step in 
question. This is marked as the second logic block. These two logic blocks are then 
swapped. This is done by switching all of the sink destinations which are generated by 
the two outputs of the logic blocks in question. Then, the whole array is searched, and if 
the x,y positions for the two selected logic blocks are encountered, they are updated with 
their new array placement.  
        

4.3 Partitioned Placements: Parallelization of the Algorithm  
 
 Four different parallelization techniques were attempted: 

 
1. Sequential Proposals 
2. Independent Sets 
3. Partitioned Sets 
4. Partitioning by Area 

 
The following is an explanation of each with a description of advantages and 
disadvantages.  
 

4.3.1 Partitioning By Area 
  

In the original implementation of the algorithm, the range decays exponentially, 
since it is a function of temperature. In our implementation, we divide the algorithm into 
two phases dependent on the range. Instead of decreasing the range slowly with 
temperature, we perform the logic block switching in two different ranges: on the full 
array, and on quarter of the array, as is shown in Figure XX. This is because we want to 
parallelize the algorithm, into four segments. This method is called Partitioning by Area, 
and it is a Fine-Grained Parallel type of move [jas2].  
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The reason we chose to keep the range at full in Phase 1 is because we want to 
make the most use out of this phase before we jump into Phase 2.  

 
Figure 4.7 Two Phases of Range and Temperature 

 

4.3.1.1 Phase 1    

 
 Because in Phase 1, the range spans the entire array, the switching can’t be split 
onto different machines. This phase is performed only on the main server, or node ‘0’. 
The length of this process depends on how many temperature steps we allocate to be 
performed in it.  
 Clearly, this phase is the bottle neck of the algorithm, but it is necessary since 
without it the output placement quality would be significantly degraded. In other words, 
the error of the output placement would be very large, when measured against the 
sequential, single processor algorithm benchmark.  
 4.3.1.2 Phase 2 
 
 In Phase 2, the placement array is divided into four tasks, as is shown in Figure 
4.8.  
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Figure 4.8 Workload Divisions for the Partitioning by Area Parallelization 

 
Initially, node(0) has the full array. At the beginning of Phase 2, the full array is 

sent to four other machines. The range is now one quarter of the full array, and each 
machine can modify one designated part. Every machine will be working independently, 
and there will not be any sharing of elements. Logic block swaps are now performed by 
each machine only in the designated region. Figure 4.8 shows the four different regions, 
with the black mask indicating the range of allowed moves for each node.  
 The point of this partition is to allow each node to work individually on 
optimizing each quarter, and to achieve better performance. But, even though moves are 
limited to the specified range, some nets still cross the boundaries into the other quarters. 
The cost function still spans the entire FPGA. As a result, after a certain number of 
moves, the calculated cost by each node, has a certain amount of error. In order to 
remove this error, each node has to update the entire array. If the updating is done 
periodically, the error can be minimized, and the placement can still be optimized by 
reaching a close to global solution. The update structure of the array is shown in Figure 
4.9 below.  
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Figure 4.9 The Update Step 

 
 In this phase, the number of moves between the updates determines the 
performance increase of parallelization, since the updates are very time consuming when 
compared to the swapping steps. In order to maximize the performance, the number of 
updates needs to be minimized. On the other hand, if we decrease the number of array 
updates too much, we might sacrifice the quality of the final placement due to error.  
 

4.3.2 Partitioned Sets 
 
 In this implementation, we create partitioned sets, where each set is a self-
contained problem. One way to partition the sets is to use a partitioning algorithm. The 
problem would be partitioned at the start, in such a way as to minimize the connected 
nets between the individual sets. The partitioning would be executed at the beginning of 
the program and then once during every update between the machines. We tried to find a 
suitable implementation of the partitioning algorithm. When we estimated the processing 
time for the partitioning and compared it to the execution time of the SA, we realized that 
the overhead was too large and decided against this method.  
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Figure 4.10 Workload Division for Partitioned Sets 

 

4.3.3 Sequential Proposals: 
  

Instead of passing different problems to each computer, we can pass the same 
array and ask each computer to analyze it and to try and find a solution. During the 
update step, all the computers are asked to present their solutions, and the best one is 
chosen. In our case, the best solution is the one with the lowest cost. Once the solution is 
chosen, the solution array is updated to all the computers using the broadcast function. 
This way the overhead is significantly smaller then before. The update step involves 
comparing a couple of numbers, and then broadcasting the same array. This is very good 
for scalability.  
 In the sequential proposals method, each machine performs swaps on the array, 
and decides whether or not to keep the swap. Then it moves onto the next swap. During 
the update step, each machine has only one array to present for best-comparison. This 
method was implemented and tested vigorously.  
 The resulting speedup of optimization was not significant. Because the swaps are 
randomly chosen, it is difficult to find a swap which actually decreases cost. 
 

for (0 to temp_steps)  
 for (0 to computers)  
  for (0 : swaps_per_step)  
   propose_new_solution()   
   decide_if_solution_is_accepted()  
  end for  
  choose_best_solution()   
 end for 
end for 
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4.11 The Structure of Sequential Proposals 

 

4.3.4 Independent Sets 
 
 This method is very similar to the one previously described, except for the way 
each computer proposes solutions. Each machine receives an array, and proposes a 
number of solutions which can be done on that array, without incrementing the swaps. 
Out of all the proposed solutions, each machine chooses the best one, and proposes it 
during the update step. This way, at every update step, the array changes the most by one 
block swap.  
 This method was coded and implemented, and testing showed extremely 
promising results.  
 The figure below shows the speedup with respect to the Independent Sets 
parallelization architecture. The cost decreases with each temperature step. Four lines on 
the graph represent the cost as it is decreasing on a single machine. Each machine 
randomly chooses a block swap. Because of the random factor, the proposed next step is 
far from optimal. The bottom line is the algorithm running on four machines. Each 
machine proposes a step, and out of the four proposed, only the best one is implemented. 
This decreases the cost much faster.  
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for (0 to temp_steps)  
 for (0 : swaps_per_step)   
  for (0 to computers)    
   for (0 to comp_steps)  
    propose_new_solution()  
    choose_best_solution()  
   end for   
  end for 
  decide_if_solution_is_accepted()  
 end for 
end for 

 

 
4.12 Solution Proposals 

 

 
 

4.13 Performance of the Sequential Proposals Parallelization  
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5. Variables 
 
We choose three variables for our analysis, and compared how they influence the overall 
speedup of the algorithm:  
 

1. number of computers 
2. number of computer steps 
3. size of array 

 

 
4.14 Variables 

 
 
The following is a simple calculation of how three factors influence the number of 
proposed solutions: 
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1 computer 
1 comp_step 
20 temp_steps 
5 swap_steps 
------------------------ 
100 proposed solutions 
 

10 computer 
100 comp_step 
20 temp_steps 
5 swap_steps 
------------------------ 
100 000 proposed solutions 
 

 

5.1 Constants 
 

We set temp_steps to 20, and swap_per_step to 5. These were kept constant 
throughout all the tests.  

 

5.2 Trials Summary 
 
The following is a list of all the trials we included in the results and analysis: 
 

 Array Size 
Number of 
Computers  Comp_steps 

100  1  1 

100  1  2 

100  1  3 

100  1  4 

100  1  5 

100  1  10 

100  1  15 

100  1  20 

100  1  30 

100  1  40 

100  1  70 

100  1  100 

100  1  120 

100  1  150 

100  1  300 

        

100  2  1 

100  2  2 

100  2  3 

100  2  4 

100  2  5 

100  2  10 

100  2  15 

100  2  20 

100  2  30 

100  2  40 

100  2  70 

100  2  100 
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100  2  300 

        

100  10  1 

100  10  2 

100  10  5 

100  10  10 

100  10  50 

 
 

 Array 
Size 

Number of 
Computers  Comp_steps 

2500 1 1

2500 1 5

2500 1 10

2500 1 10

2500 1 50

2500 1 100

2500 1 200

        

        

2500 2 1

2500 2 20

2500 2 50

2500 2 100

2500 2 200

        

2500 5 1

2500 5 20

2500 5 50

2500 5 100

2500 5 200

        

2500 10 1

2500 10 5

2500 10 20

2500 10 50

2500 10 100

2500 10 200

 
 
 

 Array 
Size 

Number of 
Computers  Comp_steps 

10000 1 5
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10000 1 50

10000 1 200

        

10000 2 20

10000 2 50

10000 2 100

10000 2 200

10000 2 500

10000 2 1000

        

10000 10 20

10000 10 50

10000 10 200

10000 10 1000

        

        

10000 20 20

10000 20 50

10000 20 200

10000 20 1000
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6. Results 
 

6.1 Array Size: 100 
 

Figure 5.1 shows how the cost decreases with swap steps performed on the 
solution array. The three lines represent the cost optimization with one, two and ten 
computers. We see that all three trials converge to the same global minimum cost, but the 
more computers we use, the faster we get there.  

 
 

 
Figure 5.1 Cost Optimization 

 
 

 
Figure 5.2 Performances of One and Two Computers 
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Figure 5.3 Performances of One and Ten Computers 

 
 In Figures 5.2 and 5.3 we see show the execution times of one, two and ten 
computers. We see that, for this array size, using one computer is always faster then two. 
This is because the problem set is too small and the overhead of communication 
diminishes any possibility for speedup. When we use ten computers, we see that only 
after a certain amount of comp_steps, we reach identical execution time. This means that 
we found the lower bound for this set up.  

In conclusion, when using ten computers with an array size of 100, we need a 
minimum of 50 comp_steps. Generally, this array size is not a good candidate for 
parallelization.  
 

6.2 Array Size: 2 500 
 

Similarly as before, in Figure 5.4 we see that as we use more computers the cost 
decreases faster.  

 
Figure 5.4 Cost Optimization 
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In the following three figures, we see similar results as before. The more 
computers we use, the more parallelization we extract. For this array size, one computer 
is also faster then two. But when we use five computers, we show a lower comp_steps 
bound of 100, at which point the execution times are equal and everything above is faster 
with five computers. With ten computers, the lower bound is also present, but it decreases 
down to around 50 comp_steps.  

In conclusion, we see that with larger problems sets we get better speedup results.  
 
 

 
Figure 5.5 Performances of One and Two Computers 

 
 

 
Figure 5.6 Performance of One and Five Computers 
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Figure 5.7 Performances of One and Ten Computers 

 

6.3 Array Size: 100 000 
 

With this array size we achieved the best results. They are outlined in Figures 5.8, 
5.9 and 5.10. We see that with the really large comp_steps, such as 1000, the speedup 
factor approaches the number of computers. We also show the speedup factor for each 
additional computer.  

 

 
Figure 5.8 Speedup with Two Computers 
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Figure 5.9 Speedup with Ten Computers 

 

 
Figure 5.10 Speedup with Twenty Computers 

 
 For this array size, we performed an overhead analysis. In Figure 5.11, we show 
the total time it takes to execute the algorithm. The processing time is shown in blue, and 
the communication between the computers is shown in red.  Clearly, as the workload for 
each machine increases, the ratio between communication and processing becomes more 
favourable for parallelization.  
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Figure 5.11 Communication Overhead 

  
 



41 
 

7. Conclusion 
 
 We performed and in-depth analysis of various ways of parallelizing the 
simulated annealing algorithm. We examined four different parallelization techniques, 
and based on preliminary results, we chose the best one and performed a full 
implementation.  
 We studied three variables: array size, number of computer steps, and number of 
computers.  We measured the effect each one had on the speedup of the algorithm and 
drew conclusions. 
 Generally, the larger the problem set, the more suitable it is for parallelization. 
We showed that smaller problems sets did not perform well. The array size of 100 was 
much faster on one computer then on two.   
 Secondly, the more work each computer did, the better the overall speedup was. 
When the computer steps were 1000, the speedup was very close to the number of 
computers used. The speedup was measured by the amount of time it would take one 
machine to generate a certain result as opposed to the number of machines used.  
 Thirdly, we discovered that when the number of computer steps is high, 
increasing the number of computers used directly influences the speedup and provides 
excellent results.  
 Finally, we formalized the lower boundary of the speedup for each parameter. 
 The table below summorizes the best speedup results for an array size of 100 000 
and comp_steps of 1000.  
  

Number of Computers Maximum Speedup 
2 1.83 
10 8.92 
20 17.15 
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9. Code 
 

The following is code for generating the netlist, performing the simulated annealing 
algorithm and implementing and measuring the execution time in MPI. 
 
#include<stdio.h> 
#include<stdlib.h> 
#define n 1000 
#define s 4000 
 
 
main() 
{ 
 
 int i,j,p; 
 int input[s]; 
 int output[n]; 
 int seed; 
 double r; 
 long int M; 
 int y; 
 int z; 
 double x; 
 
 FILE *fp; 
 fp = fopen("c:\\nlist.txt","w"); 
 
 seed = 1000; 
 M=999; 
 
 printf("\n\n\n"); 
 
/* Initialize to 0 */ 
 for(i=1;i<=s;i++) 
 { 
  input[i] = 0; 
 /* printf("Initialize input[%d] = %d\n", i, input[i]);*/ 
 } 
 for(i=1;i<=n;i++) 
 { 
  output[i] = 0; 
/*  printf("Initialise output[%d] = %d\n", i, output[i]);*/ 
 } 
 printf("Logic_in and Logic_out initialized\n"); 
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 srand(seed); 
 for(i=1;i<=n;++i) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t ", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
   
 } 
 fprintf(fp,"\n"); 
 for(i=1;i<=(n/2);i++) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
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  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
 } 
 fprintf(fp,"\n\n"); 
 for(i=1;i<=(n/5);i++) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
 } 
 fprintf(fp,"\n\n"); 
 for(i=1;i<=(n/10);i++) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
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  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
 } 
 fprintf(fp,"\n\n"); 
 for(i=1;i<=(n/100);i++) 
 { 
   
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
   
 } 
 fprintf(fp,"\n\n"); 
 for(i=1;i<=(n/150);i++) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
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  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
   
 } 
 fprintf(fp,"\n\n"); 
 for(i=1;i<=(n/500);i++) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y =(int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
 } 
 fprintf(fp,"\n\n"); 
 for(i=1;i<=(n/1000);i++) 
 { 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
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  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
   
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
   
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nOutput[%d]\nInput[%d]\t", i, z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
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  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
  r = ((double)rand()/((double)(RAND_MAX)+(double)(1))); 
  x = (r * M); 
  y = (int)x; 
  z = y+1; 
  fprintf(fp,"\nInput[%d]\t", z); 
 
 }  
fclose(fp); 
} 
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#include <stdio.h> 
#include <stdlib.h> 
#include <mpi.h> 
#define MASTER 0 
MPI_Status status; 
 
 main(int argc, char **argv) 
{   
   
 
  int i,j,k,l, num; 
   
  int tot =500; 
  int dim; 
  dim=tot*tot; 
  int min = 0; 
  int mid = tot/2; 
  int max = tot; 
   
  int array[tot][tot]; 
  int array1[tot][tot]; 
  int array2[tot][tot]; 
  int array3[tot][tot]; 
  int array4[tot][tot]; 
  double start_time_T;   /*Total start time*/ 
  double finish_time_T;  /*Total finish time*/ 
  double start_time_B;   /*Broadcasting start time*/ 
  double finish_time_B;  /*Broadcasting finish time*/ 
  double B1,B2,U1,U2,U3,U4,U11,U22,U33,U44;   
  double start_time_G;   /*Gathering start time*/ 
  double finish_time_G;  /*Gathering finish time*/ 
  double start_time_U2;   /*Updating start time */ 
  double finish_time_U2; /*Updating finish time*/ 
  double start_time_U1;     
  double finish_time_U1; 
  double start_time_U3; 
  double finish_time_U3; 
  double start_time_U4; 
  double finish_time_U4; 
  double start_time_U; 
  double finish_time_U; 
 
  int size,myid,dest,mtype,offset,p,source,nprocess; 
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  /***************start MPI**************************/ 
  MPI_Init(&argc, &argv);   
  MPI_Comm_rank(MPI_COMM_WORLD, &myid); 
  MPI_Comm_size(MPI_COMM_WORLD, &size);   
  nprocess=size-1; 
   
 
/*****************************Master Task************************/ 
  start_time_T=MPI_Wtime(); /*total start time*/ 
  
  if (myid==MASTER) 
 
   
 
    { 
   
 
 //initializing the array with values 
 
   num = 0; 
   for (i=0; i<tot; i++) 
   { 
    for (j=0; j<tot; j++) 
  { 
     array[i][j] = num; 
     num = num + 1; 
   //  printf("%d\t", array[i][j]); 
  } 
  //     printf("\n"); 
     } 
 
 //   printf("\n\n"); 
  
 
   for (i=0; i<tot; i++) 
     { 
        for (j=0; j<tot; j++) 
  { 
     array1[i][j] = array[i][j]; 
     array2[i][j] = array[i][j]; 
     array3[i][j] = array[i][j]; 
     array4[i][j] = array[i][j]; 
     //printf("%d\t", array[i][j]); 
  } 
        //printf("\n"); 
 } 
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   start_time_B=MPI_Wtime();     /*Broadcasting start time*/ 
 
  
       MPI_Bcast(&array[0][0],dim,MPI_INT,0,MPI_COMM_WORLD); 
 finish_time_B=MPI_Wtime(); 
 
  
  
 printf("Sending   time=%f\n",finish_time_B-start_time_B); 
 
 B1= finish_time_B-start_time_B; 
  
 
  MPI_Recv(&array2[0][0],dim,MPI_INT,1,80,MPI_COMM_WORLD,&status); 
 
 
    } 
   
      else //slaves 
    { 
      start_time_B=MPI_Wtime(); 
       
 MPI_Bcast(&array[0][0],dim,MPI_INT,0,MPI_COMM_WORLD); 
 // printf("Received Array\n"); 
 
 
   finish_time_B=MPI_Wtime();   /*boradcasting finish time*/ 
  printf("Receiving time=%f\n", finish_time_B-start_time_B); 
   
   
   
   
 for (i=0;i<tot;i++) 
 { 
   //for (j=0;j<tot;j++) 
    // printf ("%d ",array[i][j]); 
    // printf("\n"); 
 }  
  
     
  
    } 
  start_time_U=MPI_Wtime();    /******Total Updating time 
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  /************** computer 1 Send*****************/ 
  // printf("computer 1 sending"); 
 
 if (myid ==1) 
   { 
 
   
  //computer1 broadcasts a part of the array to all the other computers 
  
      
 for (i=min; i<mid; i++) 
    { 
      for (j=min; j<mid; j++) 
 { 
   array1[i][j] = array[i][j]; 
      
   //    printf("%d\t", array1[i][j]); 
 } 
      //   printf("\n"); 
     
    } 
 // printf("\n\n"); 
      
 
  
  start_time_U1=MPI_Wtime();    /*start updating time*/ 
      
  
  MPI_Send(&array1[0][0],dim/4,MPI_INT,2,1,MPI_COMM_WORLD); 
  MPI_Send(&array1[0][0],dim/4,MPI_INT,3,1,MPI_COMM_WORLD); 
  MPI_Send(&array1[0][0],dim/4,MPI_INT,4,1,MPI_COMM_WORLD); 
    
  MPI_Recv(&array2[0][0],dim/4,MPI_INT,2,2,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array3[0][0],dim/4,MPI_INT,3,3,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array4[0][0],dim/4,MPI_INT,4,4,MPI_COMM_WORLD,&status); 
     
  //  printf("U1=%f\n",U1); 
   
 MPI_Send(&array1[0][0],dim,MPI_INT,0,80,MPI_COMM_WORLD); 
  finish_time_U1=MPI_Wtime();   /*finish updating time*/ 
  U1=start_time_U1-finish_time_U1; 
  
   printf("Updating time 1=%f\n",finish_time_U1 - start_time_U1); 
 
   } 
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 else if (myid==2) 
   { 
      
    /************* computer 2 Send***************/ 
     //    printf("computer 2 sending\n"); 
      
  //computer2 broadcasts a part of the array to all the other computers 
  for (i=min; i<mid; i++) 
    { 
      for (j=mid; j<max; j++) 
 { 
   array2[i][j] = array[i][j]; 
      
   // printf("%d\t", array2[i][j]); 
 } 
      // printf("\n"); 
    } 
  //  printf("\n\n"); 
 
 start_time_U2=MPI_Wtime();    /*start updating time*/ 
 
 MPI_Send(&array2[0][0],dim/4,MPI_INT,1,2,MPI_COMM_WORLD); 
  MPI_Send(&array2[0][0],dim/4,MPI_INT,3,2,MPI_COMM_WORLD); 
  MPI_Send(&array2[0][0],dim/4,MPI_INT,4,2,MPI_COMM_WORLD); 
 
  MPI_Recv(&array1[0][0],dim/4,MPI_INT,1,1,MPI_COMM_WORLD,&status); 
 
  MPI_Recv(&array3[0][0],dim/4,MPI_INT,3,3,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array4[0][0],dim/4,MPI_INT,4,4,MPI_COMM_WORLD,&status); 
  finish_time_U2=MPI_Wtime(); 
 
  finish_time_U2=MPI_Wtime();   /*finish updating time*/ 
   
  //U2=start_time_U-finish_time_U; 
  //printf("updating time2=%f\n",U2+U22); 
   
  printf("Updating time 2=%f\n",finish_time_U2 - start_time_U2); 
   } 
  
 else if (myid==3) 
   { 
      
  /****************computer 3 Send**********************/ 
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     // printf("computer 3 sending\n"); 
  //computer3 broadcasts a part of the array to all the other computers 
 
  for (i=mid; i<max; i++) 
    { 
      for (j=min; j<mid; j++) 
 { 
    array3[i][j] = array[i][j]; 
      
    //   printf("%d\t", array[i][j]); 
 } 
    //  printf("\n"); 
    } 
  // printf("\n\n"); 
 
  start_time_U3=MPI_Wtime(); 
   
 MPI_Send(&array3[0][0],dim/4,MPI_INT,1,3,MPI_COMM_WORLD); 
  MPI_Send(&array3[0][0],dim/4,MPI_INT,2,3,MPI_COMM_WORLD); 
  MPI_Send(&array3[0][0],dim/4,MPI_INT,4,3,MPI_COMM_WORLD); 
  MPI_Recv(&array1[0][0],dim/4,MPI_INT,1,1,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array2[0][0],dim/4,MPI_INT,2,2,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array4[0][0],dim/4,MPI_INT,4,4,MPI_COMM_WORLD,&status); 
 
 finish_time_U3=MPI_Wtime(); 
 U3=finish_time_U3-start_time_U3; 
 printf("Updating time 3=%f\n",U3); 
  
   } 
 else if (myid==4) 
   { 
      
  /*************** computer 4 Send**********************/ 
 
     // printf("computer 4 sending\n"); 
   
 //computer4 broadcasts a part of the array to all the other computer 
  for (i=mid; i<max; i++) 
    { 
      for (j=mid; j<max; j++) 
 { 
   array4[i][j] = array[i][j]; 
      
   //  printf("%d\t", array4[i][j]); 
 } 
      // printf("\n"); 
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    } 
  // printf("\n\n"); 
 
  start_time_U4=MPI_Wtime(); 
   
 MPI_Send(&array4[0][0],dim/4,MPI_INT,1,4,MPI_COMM_WORLD); 
  MPI_Send(&array4[0][0],dim/4,MPI_INT,2,4,MPI_COMM_WORLD); 
  MPI_Send(&array4[0][0],dim/4,MPI_INT,3,4,MPI_COMM_WORLD); 
   
  MPI_Recv(&array1[0][0],dim/4,MPI_INT,1,1,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array2[0][0],dim/4,MPI_INT,2,2,MPI_COMM_WORLD,&status); 
  MPI_Recv(&array3[0][0],dim/4,MPI_INT,3,3,MPI_COMM_WORLD,&status);   
  finish_time_U4=MPI_Wtime(); 
   
 
  U4=finish_time_U4-start_time_U4; 
  printf("Updating time 4=%f\n",U4); 
   
   } 
 finish_time_U=MPI_Wtime(); 
  
 
/****************************************************/ 
 
 if (myid==1) 
   { 
      
 
 
/*****************computer 1 Recev ******************/ 
 
     //start_time_U=MPI_Wtime(); 
      
    //    MPI_Recv(&array2[0][0],2500,MPI_INT,2,2,MPI_COMM_WORLD,&status); 
    //MPI_Recv(&array3[0][0],2500,MPI_INT,3,3,MPI_COMM_WORLD,&status); 
    //MPI_Recv(&array4[0][0],2500,MPI_INT,4,4,MPI_COMM_WORLD,&status); 
   
    //finish_time_U=MPI_Wtime(); 
   
    //U11=start_time_U-finish_time_U; 
    //printf("U11=%f\n",U11); 
     
   } 
  
 else if (myid==2) 
   { 
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 /***************computer 2 Recev ******************/ 
     //start_time_U=MPI_Wtime(); 
      
     //   
MPI_Recv(&array1[0][0],2500,MPI_INT,1,1,MPI_COMM_WORLD,&status); 
  
     //  
MPI_Recv(&array3[0][0],2500,MPI_INT,3,3,MPI_COMM_WORLD,&status); 
     
//MPI_Recv(&array4[0][0],2500,MPI_INT,4,4,MPI_COMM_WORLD,&status); 
     //finish_time_U=MPI_Wtime(); 
   
     //U22=start_time_U-finish_time_U; 
   //  printf("U22=%f\n",U22); 
    
   } 
  
 if (myid==3) 
   { 
      
  /***************computer 3 Recev *******************/ 
     //start_time_U=MPI_Wtime(); 
      
     //  
MPI_Recv(&array1[0][0],2500,MPI_INT,1,1,MPI_COMM_WORLD,&status); 
     
//MPI_Recv(&array2[0][0],2500,MPI_INT,2,2,MPI_COMM_WORLD,&status); 
     // 
MPI_Recv(&array4[0][0],2500,MPI_INT,4,4,MPI_COMM_WORLD,&status); 
     //finish_time_U=MPI_Wtime(); 
     //U33=start_time_U-finish_time_U; 
     //printf("U33=%f\n",U33); 
   
   
   } 
  
 else if (myid ==4) 
   { 
      
  /*************** computer 4 Recv ********************/ 
     //start_time_U=MPI_Wtime(); 
      
     //  
MPI_Recv(&array1[0][0],2500,MPI_INT,1,1,MPI_COMM_WORLD,&status); 
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//MPI_Recv(&array2[0][0],2500,MPI_INT,2,2,MPI_COMM_WORLD,&status); 
     
//MPI_Recv(&array3[0][0],2500,MPI_INT,3,3,MPI_COMM_WORLD,&status); 
     //   finish_time_U=MPI_Wtime(); 
     // U44=start_time_U-finish_time_U; 
     //printf("U44=%f\n",U44); 
   
    
 
   } 
  
  
 
  //MPI_Bcast(&offset,64,MPI_INT,0,MPI_COMM_WORLD); 
       
  
       
 
 
  /*wait for result from all processors*/ 
  //   for (source=1; source=nprocess;source++); 
 
 
    
   
 
  { 
     
    //    MPI_Recv(&offset,64,MPI_INT,source,2,MPI_COMM_WORLD,&status); 
  //  MPI_Recv(array,64,MPI_INT,source,2,MPI_COMM_WORLD,&status); 
    //    printf("source=%d\n",p); 
 
  } 
     
   
  
 
  //now all the computers should have an updated version of the array 
  for (i=0; i<tot; i++) 
    { 
      for (j=0; j<tot; j++) 
 { 
 
   printf("%d\t", array[i][j]); 
 } 
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      printf("\n"); 
       
    } 
*/ 
 /*printf("Updating time 1=%f\n",U1+U11); 
  
 printf("Updating time 2=%f\n",U2+U22); 
  
 printf("Updating time 3=%f\n",U3+U33); 
  
 printf("Updating time 4=%f\n",U4+U44); 
  
 printf("Total Updating Time=%f\n",U1+U2+U3+U4+U11+U22+U33+U44);*/ 
  
 
   
  finish_time_T=MPI_Wtime();    /*Total finish time*/ 
  // printf("Total time=%f\n",finish_time_T- start_time_T); 
  //  printf("source=%d\n",p); 
  //printf("nprocess=%d\n",nprocess); 
  //ends MPI   
   
  //    printf("Total=%f\n",finish_time_U-start_time_U); 
   
  if (myid==0) 
    { 
      printf("Total Time=%f\n", finish_time_T - start_time_T); 
      //        printf("Total Updating Time=%f\n",finish_time_U- start_time_U); 
 
    } 
  
    
 MPI_Finalize(); 
  //  printf("Updating time 1=%f\n",U1+U11); 
  //printf("Updating time 2=%f\n",U2+U22); 
  //printf("Updating time 3=%f\n",U3+U33); 
  //printf("Updating time 4=%f\n",U4+U44); 
  //printf("Total Updating Time=%f\n",U1+U2+U3+U4+U11+U22+U33+U44); 
  
 
  // printf("Total Time=%f\n",finish_time_T - start_time_T); 
  
 //  printf("Broadcasting time=%f\n",finish_time_B - start_time_B); 
 
} 
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#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <sstream> 
#include <time.h> 
#include <sys/time.h> 
 
int print_initial_array = 0; //do you want to print the input array to 
the screen? 
 
int ran_num = 251; 
 
int tot_blocks = 10000; 
int max = 10; 
int mid = 5; 
 
int mid_size = 5; 
 
int computers = 10; 
int comp_steps = 50; 
 
int outputs  = 1; 
int line_size = 1; 
 
 
int connectivity = 50; 
  
int swap_steps = 5;    //swap steps 
 
 
int array[10000][8]; 
int array1[10000][8]; 
int array2[10000][8]; 
int array3[10000][8]; 
int array4[10000][8]; 
 
 
int old_array[10000][8]; 
int para_array[10000][8]; 
int old_array1[10000][8]; 
 
int temp_steps = 20;  //temperature steps 
int init_temp = 100; 
float temp_rate = 0.9; 
 
float time_update = 0.4; 
 
 
 
int calc_cost(void); 
void printing(); 
void switch_blocks(int outputs); 
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main() 
{ 
 
  srand((int)(time(NULL))); 
  time_update = time_update + (float)(rand()%40) / (float)100; 
  printf("%f time update\n", time_update);  
  clock_t testtime1, testtime2; 
 
  testtime1 = clock(); 
 
   
   
   
  
 time_t time1, time2; 
  int tot_time; 
  time1 = time(NULL); 
 
 
  clock_t tpart1_start, tpart1_stop, tpart1_tot; 
  clock_t tpart2_start, tpart2_stop, tpart2_tot; 
  clock_t tpart_para_start, tpart_para_stop; 
  float tpart_para_tot; 
  float tpart_para_div; 
   
 float tpart_para_tot_sec = 0; 
  tpart1_start = clock(); 
 
   
 
 
 
 
  //setting temperature 
  int p,ii; 
  int temp[temp_steps]; 
  temp[0] = init_temp; 
   
  for (ii=1; ii<temp_steps; ii++) 
    { 
      temp[ii] = (int) (temp[ii-1] * temp_rate); 
      
      //printf("%d\n", temp[ii]); 
    } 
   
  
 
 
 
  int i,j,k; 
   
  double n = 2; 
  char line[10]; 
  char c, a, b, d; 
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  int number; 
   
 
 
  outputs = 3; 
 
 
   
   
  FILE *myfile;  
  if ((myfile = fopen ( "placement.txt", "rt")) == NULL) 
    {     
      printf("ERROR: COULD NOT OPEN FILE: placement.txt\n");  
    } 
  else  
    { 
      //printf("opened file\n"); 
    } 
   
  FILE *outputfile;  
  if ((outputfile = fopen ( "outputfile.txt", "w")) == NULL) 
    {     
      printf("ERROR: COULD NOT OPEN FILE: outputfile.txt\n");  
    } 
  else  
    { 
      //printf("opened file\n"); 
    } 
  
 
  FILE *updatefile;  
  if ((updatefile = fopen ( "updatefile.txt", "w")) == NULL) 
    {     
      printf("ERROR: COULD NOT OPEN FILE: updatefile.txt\n");  
    } 
  else  
    { 
      //printf("opened file: updatefile\n"); 
    } 
 
 
 
  FILE *analysisfile;  
  if ((analysisfile = fopen ( "analysisfile.txt", "a")) == NULL) 
    {     
      printf("ERROR: COULD NOT OPEN FILE: analysisfile.txt\n");  
    } 
  else  
    { 
      //printf("opened file: analysis.txt\n"); 
    } 
 
 
 int x_size; 
 int y_size;  
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  j=0; 
   
   
   
  //aquireing the FPGA size 
  while ( (c=getc(myfile)) != '\n') 
    { 
      x_size = atoi(&c); 
    } 
 
  while ( (c=getc(myfile)) != '\n') 
    { 
      y_size = atoi(&c); 
    } 
   
  //printf("%d, %d\n", x_size, y_size); 
   
 
  //tot_blocks = x_size * y_size; 
 
  line_size = outputs*2 +2;// this needs to be read from the file!! 
   
//  int array[tot_blocks][8]; 
   
 
  //reading the numbers in from file 
  for (i = 0; i< tot_blocks; i++) 
    { 
      //printf("%d: ", i); 
       
      j= 0; 
       
      for (k = 0; k<8; k++) 
      { 
 fscanf(myfile, "%d", &array[i][k]); 
 if (print_initial_array == 1) 
 { 
  printf("%d, ", array[i][k]); 
 } 
  
      } 
       
      if (print_initial_array == 1) 
      { 
       printf("\n"); 
      } 
       
    } 
   
  //printf("\n"); 
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  int w;  
   
  //printing(); 
   
   
  fclose(myfile); // ******closing the file******* 
 
 
 
  //************************MAIN ALGORITHM  
 //PART II - placement ******************************* ONE ARRAY 
  int cost; 
  int t; 
  int new_cost; 
  int e,g; 
  int tryme;  
  int updates; 
  int pp, ps, para_cost; 
 
 
  int initial_cost; 
  cost = calc_cost(); 
  initial_cost = cost; 
  printf("initial cost: %d\n", cost); 
 
  int new_cost1, new_cost2, new_cost3, new_cost4; 
  
 
  tpart1_stop = clock(); 
  tpart1_tot = tpart1_start - tpart1_stop; 
 
 
  for (g=0; g<temp_steps; g++) 
    { 
      updates = 0; 
     
      for (e = 0; e < swap_steps; e++) 
      { 
        //switch_blocks(outputs);  //does the switch multiple times 
       new_cost = calc_cost(); 
        old_array = array; 
 
        tpart_para_start = clock(); 
       for (pp=0; pp< computers; pp++)                    
//COMPUTER PARALLELIZATION 
       { 
         
          for (ps=0; ps< comp_steps; ps++) 
          { 
            old_array1 = array; 
          switch_blocks(outputs);  //does the switch multiple 
times 
          new_cost1 = calc_cost(); 
          //printf("step:%d:: %d,%d::   %d, %d, 
%d\n",e,pp,ps, cost, new_cost, new_cost1); 
          if (new_cost1 < new_cost) 
          { 
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           new_cost = new_cost1; 
          } 
          else 
          { 
           array = old_array1; 
          } 
          } 
          //printf("\n");  
        } 
       tpart_para_stop = clock(); 
        //printf("start: %f, stop: %f  ---> %f\n", 
(float)(tpart_para_start), (float)(tpart_para_stop), tpart_para_tot); 
        tpart_para_tot = tpart_para_tot +  (float)(tpart_para_stop - 
tpart_para_start); 
 
       if (new_cost < cost) //accept lower cost  ****     
//DECISION*****************************************************8 
      { 
        cost = new_cost; 
        //printf("%d, p: %d: new_cost:%d\n",g, pp, cost); 
        updates++; 
      } 
       else 
      { 
        tryme = rand()%100 +1; 
        //printf("temp[%d] > %d\n", temp[g], tryme); 
    
        if (temp[g] < tryme) // reject higher cost **** 
        { 
          array = old_array; 
          //printf("%d,p: %d: reject higher cost: %d\n",g, 
pp, cost);        
        } 
        else  //accept hight cost  ***** 
        { 
          cost = new_cost; 
          //printf("%d, p: %d: accept higher cost: %d\n", 
g,pp,cost); 
          updates++; 
         }    
      } 
      //printf("p: %d, cost: %d\n",pp, cost); 
      } 
      //printing(); 
     //printf("t: %d, cost: %d\n", g, cost); 
      printf("***t: %d, updates: %d, cost: %d\n", g, updates, cost); 
   }    
    
   
  fprintf(updatefile, "%d\t%d\n", g, updates); 
  fprintf(outputfile, "%d\t%d\t%d\t%d\n",g,e, cost, updates); 
     
   
 
 //PART III - placement ******************************* FOUR ARRAYS 
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  //tpart_para_tot = tpart_para_start - tpart_para_stop; 
 
 
 
 
 
 
 
  time2 = time(NULL); 
  tot_time = time2 - time1; 
  testtime2 = clock(); 
 
//  double time4; 
 
// time4 = time(NULL); 
 printf("%d\n", time2); 
   
  //printing to screen; 
  printf("initial cost: %d\nfinal cost: %d   <-------------\ndiff: 
%d\npercentage improvement:%d\n", initial_cost, cost, initial_cost - 
cost, (initial_cost - cost)/initial_cost); 
  printf("total time (time_t): %d\n", tot_time); 
 
   
   
   
  //printing to file; 
  fprintf(outputfile, "initial cost: %d\nfinal cost: %d\ndiff: 
%d\npercentage improvement:%d\n", initial_cost, cost, initial_cost - 
cost,( (double)((initial_cost - cost)/initial_cost))*100  ); 
  fprintf(outputfile, "total blocks: %d\n", tot_blocks); 
  fprintf(outputfile, "swap steps: %d\n", swap_steps); 
  fprintf(outputfile, "temp steps: %d\n", temp_steps); 
  fprintf(outputfile, "total time: %d\n", tot_time); 
 
  fprintf(outputfile, "tot_blocks: %d\n", tot_blocks); 
  fprintf(outputfile, "connectivity: %d\n", connectivity); 
  
  fprintf(outputfile, "ran_num: %d\n", ran_num); 
 
 
 
 
  
 
 
//TIME CALCULATIONS 
 
  float tot_time_sec, time_parallel_1, time_parallel_2, 
time_update_tot; 
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  tot_time_sec = (float)(testtime2 - testtime1) / 
(float)(CLOCKS_PER_SEC) ; 
   
  tpart_para_tot_sec = (float)(tpart_para_tot) / 
(float)(CLOCKS_PER_SEC); 
  tpart_para_div = tpart_para_tot / computers / CLOCKS_PER_SEC; 
   
  time_update_tot = time_update * temp_steps * swap_steps; 
 
  time_parallel_1 = tot_time_sec - tpart_para_tot_sec; 
  time_parallel_2 = time_parallel_1  + tpart_para_div + 
time_update_tot; 
 
  printf("total time (from clocks):  %f  <------\n", tot_time_sec); 
 
  printf("tpart_para_tot: %f\n", tpart_para_tot); 
  printf("tpart_para_tot_sec  : %f\n", tpart_para_tot_sec); 
  printf("tpart_para_div  : %f\n", tpart_para_div   ); 
  printf("time_update_tot  : %f\n", time_update_tot); 
  printf("time_parallel_1  : %f\n", time_parallel_1   ); 
  printf("time_parallel_2  : %f  <------\n", time_parallel_2   ); 
 
 
 
   
  fprintf(outputfile, "\n\ntot_blocks, computers, comp_steps, 
temp_steps, temp_rate, swap_steps, connectivity, tot_time_sec, 
time_parallel_2, cost\n%d\t%d\t%d\t%d\t%f%d\t%d\t%f\t%f\t%d\t%d\t%f\n", 
tot_blocks, computers, comp_steps, temp_steps, temp_rate, swap_steps, 
connectivity, tot_time_sec, time_parallel_2, initial_cost, cost, 
time_update); 
 
 
  fprintf(analysisfile, 
"%d\t%d\t%d\t%d\t%f%d\t%d\t%f\t%f\t%d\t%d\t%f\t%f\n", tot_blocks, 
computers, comp_steps, temp_steps, temp_rate, swap_steps, connectivity, 
tot_time_sec, time_parallel_2, initial_cost, cost, time_update, 
tpart_para_tot_sec); 
   
  fclose(outputfile); 
  fclose(analysisfile); 
 
} 
 
     
//*************************END MAIN******************************* 
 
 
 
 
 
 
 
 



69 
 

 
int calc_cost() 
{ 
 //calculating cost 
  int cost = 0; 
   
  int minx,maxx, miny, maxy,i, k, j; 
  int tot_cost = 0; 
   
  for (i = 0; i < tot_blocks; i++) 
    { 
      j = 0; 
       
      minx = maxx = array[i][j]; 
      miny = maxy = array[i][j+1]; 
       
      // printf("%d, %d\n", array[i][j], array[i][j+1]); 
 
      for(k=0; k < (outputs); k++) 
 { 
   j = j+2; 
    
   if ((array[i][j] != 0) && (array[i][j+1] != 0)) 
     { 
  
       if (array[i][j] < minx) 
  { 
    minx = array[i][j]; 
        
  } 
       if (array[i][j] > maxx)  
  { 
    maxx = array[i][j]; 
    //printf("%d:%d\n",j, maxx); 
        
  } 
       if (array[i][j+1] < miny) 
  { 
    miny = array[i][j+1]; 
  } 
       if (array[i][j+1] > maxy) 
  { 
    maxy = array[i][j+1]; 
  } 
     } 
    
 } 
     
      //printf("%d: %d, %d, %d, %d --- ",i, minx, maxx, miny, maxy); 
      cost = (maxx - minx) + (maxy - miny); 
      tot_cost = tot_cost + cost; 
       
      //printf("%d: line_cost=%d\n",i, cost); 
  
    } 
  //printf("\n"); 
   



70 
 

  return(tot_cost); 
 
   
   
} 
 
 
 
 
 
 
 
 
void printing() 
{ 
  int w,j; 
   
  //printing the array to the screen 
  for (w = 0; w < tot_blocks; w++) 
    {  
      printf("%d: ",w); 
       
      for (j = 0; j < line_size; j++) 
 { 
    
   printf("%d ", array[w][j]); 
 } 
      printf("\n"); 
       
    } 
} 
 
 
 
 
 
 
//switching blocks function 
 
    
 
void switch_blocks( int outputs) 
{ 
   
  //switching two blocks 
 
  int from, to; 
  int tempx,tempy; 
  int s, t;      
  int i, j, k; 
  int temp, f; 
   
 
  //mod to use the range function!!!! ***** 
  from = (rand()%tot_blocks) ; 
  to = (rand()%tot_blocks); 
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  //printf("from:%d, to:%d\n", from,to); 
 
  for (f=2; f<8; f++) 
    { 
      //printf("%d, ",f); 
       
       
      temp=array[from][f]; 
      //printf("%d\n", array[to][f]); 
       
      array[from][f] = array[to][f]; 
      array[to][f]=temp; 
    } 
       
 
 
   
  //temp1 = array[from][0]; 
  //temp2 = array[from][1]; 
  //array[from][0] = array[to][0]; 
  //array[from][1] = array[to][1]; 
  //array[to][0] = tempx; 
  //array[to][1] = tempy; 
   
  for (i = 0; i < tot_blocks; i++) 
    { 
      j = 2; 
     
      // printf("%d, %d\n", array[i][j], array[i][j+1]); 
 
      for(k=0; k < (outputs); k++) 
 { 
   //printf("i:%d, j=%d, k=%d\n", i, j, k); 
    
   if ((array[i][j] == array[from][0]) && (array[i][j+1] == 
array[from][1])) 
     { 
       array[i][j] = array[to][0]; 
       array[i][j+1] = array[to][1]; 
       //printf("i = %d, here: (%d, %d) = (%d, %d)\n",i, 
array[i][j], array[i][j+1], array[from][0], array[from][1]); 
        
     } 
    
   else if ((array[i][j] == array[to][0]) && (array[i][j+1] == 
array[to][1])) 
     { 
       array[i][j] = array[from][0]; 
       array[i][j+1] = array[from][1]; 
     }        
    
   j = j+2; 
    
 }             
    } 
} 


