

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 1

Multitasking and Real-time Scheduling

EE8205: Embedded Computer Systems
http://www.ecb.torontomu.ca/~courses/ee8205/

Dr. Gul N. Khan

http://www.ecb.torontomu.ca/~gnkhan
Department of Electrical, Computer and Biomedical Engineering

Toronto Metropolitan University

Overview
• RTX - Preemptive Scheduling

• Real-time Scheduling Techniques
▪ Fixed-Priority and Earliest Deadline First Scheduling

• Utilization and Response-time Analysis

• Priority Inversion

• Sporadic and Aperiodic Process Scheduling

Chapter 6 of the Text by Wolf, Chapter 13 of Text by Burns and Wellings and Keil-RTX documents.

http://www.ee.ryerson.ca/~gnkhan
http://www.ee.ryerson.ca/~gnkhan
https://www.ecb.torontomu.ca/
https://www.ecb.torontomu.ca/

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 2

Priority-driven Scheduling

Rules:

• each process has a fixed priority (1 lowest);

• highest-priority ready process gets CPU;

• process continues until done.

Processes
• P1: priority 3, execution time 10

• P2: priority 2, execution time 30

• P3: priority 1, execution time 20

time

P2 ready t=0 P1 ready t=15

P3 ready t=18

0 30 10 20 60 40 50

P2 P2 P1 P3

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 3

RTX Scheduling Options

RTX allows us to build an application with three different kernel-

scheduling options:

• Pre-Emptive scheduling

Each task has a different priority and will run until it is pre-

empted or has reached a blocking OS call.

• Round-Robin scheduling

Each task has the same priority and will run for a fixed time, or

time slice, or until has reached a blocking OS call.

• Co-operative multi-tasking

Each task has the same priority, and the Round-Robin is

disabled. Each task will run until it reached a blocking OS call or

uses the os_tsk_pass() call.

The default scheduling option for RTX (Round-Robin) is Pre-

emptive.

http://www.keil.com/support/man/docs/rlarm/rlarm_ar_preemt.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_ar_rrobmt.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_ar_coopmt.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_tsk_pass.htm

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 4

RTX: Preemptive Scheduling

When a task with a higher priority than the currently running task

becomes ready to run, RTX suspends the currently running task. A

preemptive task switch occurs when:
• the task scheduler is executed from the system tick timer interrupt.

Task scheduler processes the delays of tasks. If the delay for a task
with a higher priority has expired, then the higher priority task starts to
execute instead of the current task.

• an event is set for a higher priority task by the currently running task
or by an interrupt service routine. The currently running task is
suspended, and the higher priority task starts to run.

• a token is returned to a semaphore, and a higher priority task is
waiting for the semaphore token. The currently running task is
suspended, and the higher priority task starts to run. The token can be
returned by the currently running task or by an interrupt service
routine.

• a mutex is released and a higher priority task is waiting for the mutex.
The currently running task is suspended, and the higher priority task
starts to run.

http://www.keil.com/support/man/docs/rlarm/rlarm_os_dly_wait.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_evt_set.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_sem_send.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_mut_release.htm

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 5

Pre-emptive Scheduling

A preemptive task switch occurs when:
• a message is posted to a mailbox, and a higher priority task is waiting

for the mailbox message. The currently running task is suspended, and
the higher priority task starts to run. The message can be posted by the
currently running task or by an interrupt service routine.

• a mailbox is full, and a higher priority task is waiting to post a
message to a mailbox. As soon as the currently running task or an
interrupt service routine takes a message out from the mailbox, the
higher priority task starts to run.

• the priority of the currently running task is reduced. If another task is
ready to run and has a higher priority than the new priority of the
currently running task, then the current task is suspended immediately,
and the higher priority task resumes its execution.

os_tsk_prio () function changes the execution priority of the task
identified by the argument task_id e.g.
 os_tsk_prio_self (5);

 os_tsk_prio(tsk2, 10);

http://www.keil.com/support/man/docs/rlarm/rlarm_os_mbx_send.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_mbx_send.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_tsk_prio.htm

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 6

RTX - Preemptive Switching Example

• Task job1 has a higher priority than task job2.

• When job1 starts, it creates task job2 and then enters the

os_evt_wait_or function.

• The RTX kernel suspends job1 at this point, and job2 starts executing.

• As soon as job2 sets an event flag for job1, the RTX kernel suspends

job2 and then resumes job1.

• Task job1 then increments counter cnt1 and calls the os_evt_wait_or

function, which suspends it again.

• The kernel resumes job2, which increments counter cnt2 and sets an

event flag for job1. os_evt_set

• This process of task switching continues indefinitely.

#include <rtl.h>

OS_TID tsk1,tsk2;

int cnt1,cnt2;

__task void job1 (void);

__task void job2 (void);

http://www.keil.com/support/man/docs/rlarm/rlarm_os_evt_wait_or.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_evt_set.htm

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 7

RTX - Task Switching Example

__task void job1 (void) {

 os_tsk_prio (2);

 tsk1 = os_tsk_self ();

 os_tsk_create (job2, 1);

 while (1) {

 os_evt_wait_or (0x0001, 0xffff);

 cnt1++;

 }

}

__task void job2 (void) {

 while (1) {

 os_evt_set (0x0001, tsk1);

 cnt2++;

 }

}

void main (void) {

 os_sys_init (job1);

 while (1);

}

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 8

RTX and Interrupt Functions

RTX can work with interrupt functions in parallel. However, it is

better to avoid IRQ nesting.
An IRQ function can send a signal/ or message to start a high priority task.

Interrupt functions are added to an ARM application in the same way as in any

other non-RTX projects.

FIQ interrupts are never disabled by the RTX kernel. We cannot call the isr_ library

functions from the FIQ interrupt function.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 9

Threads - Signals/Waits

Threads support is available with for RTX with CMSIS-RTOS API.
http://www.keil.com/pack/doc/cmsis_rtx/_using.html

void led_Thread1 (void const *argument);
osThreadDef(led_Thread1, osPriorityNormal, 1, 0);

osThreadId Thr_led_ID1;

int main(void){
...

Thr_led_ID1 =
 osThreadCreate(osThread(led_Thread1), NULL);

...}

A wait flag may be set in the code as follows:
osSignalWait (0x03,osWaitForever);

The thread is waiting for the signal flag 0x03 to be asserted. osWaitForever
parameter indicates the maximum duration in msecs that the thread should wait to
be signaled.

A signal may be sent to a thread or cleared using:
osSignalSet(Thr_led_ID2,0x01); or

osSignalClear(Thr_led_ID2, 0x01);

http://www.keil.com/pack/doc/cmsis_rtx/_using.html

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 10

The Scheduling Problem

• Can App-tasks meet all the deadlines?

• Must be able to meet deadlines for all the cases.

• How much CPU time, we need to meet the deadlines?

Process Initiation

• Periodic process: executes on (almost) every period.

• Aperiodic process: execution on demand.

Analyzing aperiodic process set is harder---must consider

worst-case combinations of process activations.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 11

Process Timing Requirements

Period: interval between process (task) activations.

Initiation interval: reciprocal of period.

Initiation time: time at which the process becomes ready.

Deadline: time at which process must finish.

Timing violations - What happens if a process does not finish

by its deadline?
Hard deadline: system fails if missed.

Soft deadline: user may notice, but system does not necessarily fail.

Example: Space Shuttle software error A software timing error

delayed shuttle’s first launch:
• Primary control system PASS and backup system BFS.

• BFS failed to synchronize with PASS.

• Change to one routine added delay that threw off start time calculation.

• 1 in 67 chance of timing problem.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 12

Process Model

• The application is assumed to consist of a fixed set of

processes.

• Processes are completely independent of each other.

• All system's overheads, context-switching times and so

on are ignored (i.e. assumed to have zero cost)

• All processes are periodic, with known periods.

• All processes have a deadline equal to their period.

 (that is, each process must complete before

 it is next released)

• All processes have a fixed worst-case execution time.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 13

Real-time Scheduling Techniques

• Fixed-Priority Scheduling (FPS)

• Earliest Deadline First (EDF)

FPS: Fixed-Priority Scheduling
▪ This is the most widely used approach.

▪ Each process has a fixed, (static) priority that is computed

before execution.

▪ The runnable processes are executed in an order determined

by their priority.

▪ In real-time systems, the “priority” of a process is derived

from its temporal requirements, not its importance to the

correct functioning of the system or its integrity.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 14

FPS: Fixed-Priority Scheduling

Rate Monotonic Priority Assignment

• Each process is assigned a (unique) priority based on its

period; the shorter the period, the higher the priority.

• For two processes i and j:

• An optimal priority assignment means: if any process set

can be scheduled (using preemptive priority-based

scheduling) with a fixed-priority assignment scheme,

then the given process set can also be scheduled with a

rate monotonic assignment scheme.

• Priority 1 is the lowest (least) priority.

P jPiT jT i 

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 15

Priority Assignment: An Example

Process Period, T Priority, P

 a 25 5
 b 60 3
 c 42 4
 d 105 1
 e 75 2

Period T: Minimum time between process releases.

C: Worst-case computation time (WCET) of the process.

U: The utilization of each process (equal to C/T).

R: Worst-case response time of the process.

B: Worst-case blocking time for the process.

D: Deadline of the process.

N: Number of processes.

The interference time of the process.

Release jitter of the process.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 16

Utilization-Based Analysis

For D=T process sets, a sufficient but not necessary

schedulability test exists.

__N Utilization bound
 1 100.0%

 2 82.8%

 3 78.0%

 4 75.7%

 5 74.3%

 10 71.8%

)12(/1

1

− 
=

N
N

i i

i N
T

C
U

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 17

Utilization-Based Analysis

Process Set A

Process Period, T Computation Time, C Priority, P Utilization, U
a 50 12 1 0.24

b 40 10 2 0.25

c 30 10 3 0.33

The combined utilization is 0.82 (or 82%)

This is above the threshold for three processes (0.78) and,

hence, this process set fails the utilization test.

c b a c b

0 10 20 30 40 50

Time

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 18

Time-Line for Process Set A

0 10 20 30 40 50 60

Time

Process

a

b

c

Process Release Time

Process Completion Time

Deadline Met

Process Completion Time

Deadline Missed

Executing

Preempted

c b a c b

0 10 20 30 40 50

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 19

Utilization-Based Analysis

Process Set B

Process Period

 T

Computation Time

C

Priority

P

Utilization

U

a 80 32 1 0. 400

b 40 5 2 0.125

c 16 4 3 0.250

• The combined utilization is 0.775 (or 77.5%)

• This is below the threshold for three processes (0.78)

and, hence, this process set will meet all its deadlines.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 20

Utilization-Based Analysis

Process Set C

Process Period

 T

Computation Time

C

Priority

P

Utilization

U

a 80 40 1 0. 50

b 40 10 2 0.25

c 20 5 3 0.25

• The combined utilization is 1.0

• This is above the threshold for three processes (0.78),

but the process set will meet all its deadlines.

The Utilization test is said to be sufficient but not necessary

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 21

Time-Line for Process Set C

Utilization-based test is neither exact nor general but its O(N)

0 10 20 30 40 50 60

Time

Process

a

b

c

70 80

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 22

Earliest Deadline First (EDF) Scheduling

• The runnable processes are executed in the order determined

by the absolute deadlines of the processes.

• The next process to run being the one with the shortest

(nearest) deadline.

• It is possible to know the relative deadlines of each process

e.g. 25ms after release. The absolute deadlines are computed

at run time and hence the scheme is described as dynamic.

Value Based (VBS) Scheduling

• If a system can become overloaded then simple static priorities or

deadlines are not sufficient; a more adaptive scheme is needed.

This often takes the form of assigning a value to each process and

employing an on-line value-based scheduling algorithm to decide

which process to run next.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 23

Preemption and Non-Preemption

With priority-based scheduling, a high-priority process may be

released during the execution of a lower priority one.

• In a preemptive scheme, there will be an immediate switch to the

higher-priority process.

• With non-preemption, the lower-priority process will be allowed

to complete before the other executes.

• Preemptive schemes enable higher-priority processes to be more

reactive, and hence they are preferred.

• Alternative strategies allow a lower priority process to continue to

execute for a bounded time.

• These schemes are known as deferred preemption or cooperative

dispatching.

• Schemes such as EDF and VBS can also take on a preemptive or

non-pre-emptive form.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 24

Utilization-based Test for EDF

• Superior to FPS; it can support high utilizations.

• However, FPS is easier to implement, as priorities are static.

• EDF is dynamic and requires a more complex run-time system that

will have higher overhead.

• It is easier to incorporate processes without deadlines into FPS;

giving a process an arbitrary deadline is more artificial.

• It is easier to incorporate other factors into the notion of priority

than it is into the notion of deadline.

• During overload situations:
▪ FPS is more predictable; Low priority process miss their deadlines first.

▪ EDF is unpredictable; a domino effect can occur in which a large number

of processes miss deadlines.

1
1


=

N

i
i

i

T

C A much simpler test

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 25

Response-Time Analysis

Task i's worst-case response time, R is calculated first and

then checked (trivially) with its deadline.

During R, each higher priority task j will execute a no. of times.

i i i
I C R + =

R 

D i i

where I is the interference from higher

priority tasks

Total interference = j

j

i C

T

R

















Number of Releases =

j

i

T

R













 Ceiling function gives the

smallest integer greater than

the fractional number on

which it acts.

Ceiling of 1/3 = 2, 6/5 = 2

And 6/3 =2

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 26

Response Time

where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

The set of values is monotonically non-

decreasing.

 When the solution to the equation has been found,

 must not be greater than (e.g. 0 or)

1+= n

i

n

i
ww

,..,...,,, 210 n

iiii
wwww

0

i
w

i
R

i
C

j
ihpj

j

i

ii
C

T

R
CR  








+=

)(

j
i hp j

j

n

i

i

n

i
C

T

w

C w  











+ =



+

) (

1

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 27

Response Time Calculation Algorithm

for i in 1..N loop -- for each process in turn

 n := 0

loop

 calculate new

 if then

 exit value found

 end if

 if then

 exit value not found

 end if

 n := n + 1

 end loop

end loop

i

n

i
Cw =:

1+n

i
w

n

i

n

i
ww =+1

n

ii
wR =

i

n

i
Tw +1

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 28

Response Time Calculation Example

Process Set D

Process Period, T Computation Time, C Priority, P
a 7 3 3

b 12 3 2

c 20 5 1

6

6 3

7

6

3

6 3

7

3

3

3

2

1

0

=

= 







+ =

=









+ =

=

b

b

b

b

R

w

w

w

3=
a

R

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 29

Response Time Calculation

Process c

17

14

3

12

14

3

7

14

5

3

12

11

3

7

11

5

11 3

12

5

3

7

5

5

5

3

2

1

0

=

 



 



+









+ =

=

 



 



+









+ =

=

 



 



+









+ =

=

c

c

c

c

w

w

w

w

20

20 3

12

20

3

7

20

5

20 3

12

17

3

7

17

5

5

4

=

=
 



 



+








+ =

=
 



 



+








+ =

c

c

c

R

w

w

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 30

Process Set C

Process Period, T Computation Time, C Priority, P Response Time, R

a 80 40 1 80

b 40 10 2 15

c 20 5 3 5

• The combined utilization is 1.0.

• This was above the utilization threshold for three processes (0.78)

therefore it failed the test.

• The response time analysis shows that the process set will meet all

its deadlines.

• RTA is necessary and sufficient.

If the process set passes the test they will meet all their deadlines; if

they fail the test then, at run-time, a process will miss its deadline.
(unless computation time estimations themselves turn out to be pessimistic)

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 31

Worst-Case Execution Time – WCET

• Obtained by either measurement or analysis.

• The problem with measurement is that it is difficult to be sure

when the worst case has been observed.

• The drawback of analysis is that an effective model of the

processor (including caches, pipelines, memory wait states and

so on) must be available.

Most analysis techniques involve two distinct activities.

• The first takes the process and decomposes its code into a

directed graph of basic blocks.

• These basic blocks represent straight-line code.

• The second component of the analysis takes the machine code

corresponding to a basic block and uses the processor model to

estimate its worst-case execution time.

• Once the times for all the basic blocks are known, the directed

graph can collapse.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 32

WCET Analysis

Need Semantic Information

for I in 1.. 10 loop

 if Cond then

 -- basic block of cost 100

 else

 -- basic block of cost 10

 end if;

end loop;

• Simple cost 10 x 100 (+overhead), say 1005.

• But if Cond only true on 3 occasions then cost is 375

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 33

Real-time Scheduling Exercises

Exercise-1:

Consider three processes P, Q and S. P has a period of 100msec in which it

requires 30msecs of processing. The corresponding values for Q and S are (6, 1)

and (25, 5) respectively. Assume that P is the most important process in the

system, followed by Q and then S.

(1) What is the behavior of the scheduler if priority is based on importance?

(2) What is the process utilization of P, Q and S.

(3) How should the process be scheduled so that all deadlines are met?

(4) Illustrate one of the schemes that allows these processes to be scheduled.

Exercise-2:

Add a fourth process R, to the set of processes given in Exercise-1. Failure of this

process will not lead to safety being undermined. R has a period of 50ms but has a

processing requirement that is data dependent and varies from 5 to 25 ms.

Discuss how this process should be integrated with P, Q and S.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 34

Hard and Soft Real-time Processes

Hard Real-time Process: The deadline must not be missed.

Soft Real-time Process: The application is tolerant of missed

deadlines.

• In many situations the WCET (worst-case execution

time) figures for sporadic processes are considerably

higher than the averages.

• Measuring schedulability with worst-case figures may

lead to exceptionally low processor utilizations.

• Interrupts often arrive in bursts e.g. an abnormal sensor

reading may lead to significant additional computation.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 35

Sporadic Processes

• A Sporadic process is that which has hard real-time

applications.

• Sporadic processes have a minimum inter-arrival time.

• They also require D < T.

• The response time algorithm for fixed priority-

scheduling works perfectly for values of D less than T

as long as the stopping criteria becomes Wi
n+1

 > Di.

• It also works perfectly well with any priority ordering,

hp(i) always gives the set of higher-priority processes.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 36

Hard/Soft Process Scheduling Guidelines

Rule 1 — all processes should be schedulable using

average execution times and average arrival rates.

Rule 2 — all hard real-time processes should be

schedulable using worst-case execution times and

worst-case arrival rates of all processes (including soft)

• A consequence of Rule 1 is that there may be situations in

which it is not possible to meet all current deadlines.

• This condition is known as a transient overload.

• Rule 2 ensures that no hard-process will miss its deadline.

• If Rule 2 gives rise to unacceptably low utilizations for

“normal execution” then action must be taken to reduce the

worst-case execution times (or arrival rates)

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 37

Aperiodic Processes

• Aperiodic processes have soft real-time jobs.

• They do not have minimum inter-arrival times.

• Can run aperiodic processes at a priority below the

priorities assigned to hard processes, therefore, they cannot

steal, in a pre-emptive system, resources from the hard

processes.

• This does not provide adequate support to soft processes,

which will often miss their deadlines.

• To improve the situation for soft processes, a server

(sporadic) can be employed.

• Servers protect the processing resources needed by hard

processes but otherwise allow soft processes to run as soon

as possible.

• POSIX support Sporadic Servers

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 38

Process Sets with D < T

• For D = T, Rate Monotonic priority ordering is optimal.

• For D < T, (DMPO) Deadline Monotonic Priority Ordering is

optimal.

D < T Example Process Set

Process Period

T

Deadline

D

Computation

Time, C

Priority

P

Response

Time, R
a 20 5 3 4 3

b 15 7 3 3 6

c 10 10 4 2 10

d 20 20 3 1 20

Proof of “DMPO is Optimal” is given in the text.

jiji
PPDD 

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 39

Deadline Scheduling Exercises

Exercise-1:

Consider two jobs, A and B, in a deadline scheduling system. The deadline for A

is before the deadline for B. Explain why we should run A before B, that is, show

that if running A then B fails to meet some deadline then running B before A will

also fail to meet some deadline.

Exercise –2:

Consider a set of 5 aperiodic tasks whose execution profiles are given below.

Develop the scheduling diagram of these processes employing EDF and FCFS.

Process Arrival Time Execution Time Starting Deadline

A 10 20 100

B 20 20 30

C 40 20 60

D 50 20 80

E 60 20 70

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 40

Process Interactions and Blocking

• If a process is suspended waiting for a lower-priority process to

complete some required computation then the priority model is,

in some sense, being undermined.

• The process is said to suffer priority inversion.

• If a process is waiting for a lower-priority process, the process is

said to be blocked.

• Dynamic priorities can vary during execution.

 One has to avoid Priority Inversion.

Bounded Priority Inversion
Duration is not longer than that of the critical section where the

lower-priority process owns the resource.

Unbounded Priority Inversion
Occurs when a third (medium-priority) process preempts the low-

priority process during the inversion for an indefinite time.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 41

Priority Inversion

An extreme example of priority inversion, consider the

executions of four periodic processes: a, b, c, and d; and

two resources: Q and V

Example of Priority Inversion

Process Priority Execution Sequence Release Time

a 1 EQQQQE 0

b 2 EE 2

c 3 EVVE 2

d 4 EEQVE 4

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 42

Example of Priority Inversion
Process

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Preempted

Blocked

Executing

Executing with Q locked

Executing with V locked

Process Completion Time

Deadline Met

Process Release Time

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 43

Priority Inheritance

If process a is blocking the process d, then it runs with the

priority of d.

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process
Process Completion Time

Deadline Met
Process Release Time

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 44

Calculating Blocking

• If a process has m critical sections that can lead to its blocking then

the maximum number of times it can be blocked is m.

• If B is the maximum blocking time and K is the number of critical

sections, the process i has an upper bound on its

Response Time and Blocking:

=
=

K

k
i

kCikusageB
1

)(),(blocking given by:

i i i i
I B C R + + = j

i hp j j

i

i i i
C

T

R

B C R 

 















+ + =

) (

j
ihpj

j

n

i

ii

n

i
C

T

w
BCw  








++=



+

)(

1

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 45

RTX - Priority Inversions

To prevent priority inversions, RTX employs the Priority

inheritance technique. For a brief time, the lower-priority task runs

at a priority of a higher-priority pending task.

The RTX mutex objects (Mutual Exclusive Lock objects) employ

the Priority inheritance.

Mutex Management Routines

os_mut_init: Initializes a mutex object.
os_mut_release: Releases a mutex object.
os_mut_wait: Waits for a mutex object to become available

• Mutual exclusion locks (mutexes) are an alternative to avoid synchronization

and memory access problems.
• Mutexes are software objects that a task can use to lock the common

resource. Only the task that locks the mutex can access the common
resource.

• The kernel blocks all other tasks that request the mutex until the task that
locked the mutex unlocks it.

http://www.keil.com/support/man/docs/rlarm/rlarm_ar_mut_mgmt_funcs.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_mut_init.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_mut_release.htm
http://www.keil.com/support/man/docs/rlarm/rlarm_os_mut_wait.htm

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 46

Priority Ceiling Protocols

OCPP: Original ceiling priority protocol

ICPP: Immediate ceiling priority protocol

OCPP

• Each process has a static default priority assigned (perhaps by the

deadline monotonic scheme)

• Each resource has a static ceiling value defined, this is the

maximum priority of the processes that use it.

• A process has a dynamic priority that is the maximum of its own

static priority and any it inherits due to it blocking the higher-

priority processes.

• A process can only lock a resource if its dynamic priority is

higher than the ceiling of any currently locked resource.

(excluding any that it has already locked itself)

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 47

OCPP Inheritance

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process

Process Completion Time

Deadline Met

Process Release Time

Executing

Executing with Q locked

Executing with V locked

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 48

ICPP

• Each process has a static default priority assigned (perhaps

by the deadline monotonic scheme).

• Each resource has a static ceiling value defined; this is the

maximum priority of the processes that use it.

• A process has a dynamic priority that is the maximum of its

own static priority and the ceiling values of any resources it

has locked.

• As a consequence, a process will only suffer a block at the

very beginning of its execution.

• Once the process starts actually executing, all the resources

it needs must be free; if they were not, then some process

would have an equal or higher priority and the process's

execution would be postponed.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 49

ICPP Inheritance

Process Completion Time

Deadline Met

Process Release Time

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process

Executing

Executing with Q locked

Executing with V locked

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 50

OCPP versus ICPP

The worst-case behavior of the two ceiling schemes is identical (from a

scheduling viewpoint)

• A high-priority process can be blocked at most once during its

execution by lower-priority processes.

• Deadlocks are prevented.

• Transitive blocking is prevented.

• Ensure mutual exclusive access to resources (by protocol itself)

There are some points of difference:

▪ ICPP is easier to implement than the original (OCPP) as blocking

relationships need not be monitored.

▪ ICPP leads to less context switches as blocking is prior to first

execution.

▪ ICPP requires more priority movements as this happens with all

resource usage.

▪ OCPP changes priority only if an actual block has occurred.

ICPP is called Priority Protect Protocol in POSIX

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 51

Mars Pathfinder Suffered Unbounded

Priority Inversion

Low-priority Meteorological Process:

Acquired the (shared) bus.

Medium-priority, Long-running, Communications

Process:

Woke up and preempted the meteorological thread.

High-priority Bus Management Process:

Woke up and was blocked because it could not acquire

the bus;

When it could not meet its deadline it reinitialized the

computer via a hardware reset.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 52

Mars Pathfinder

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 53

Duration of Unbounded Priority Inversion

Limiting the duration of unbounded priority inversion prevents

low-priority process from being preempted by the medium-

priority processes during the priority inversion.

Technique: Manipulate process priorities at run-time.

Scheduling: Processes with higher priority are scheduled to run

first.

Objective: Assign priorities in such a way that all outputs are

computed before their deadlines.

• Deadline-Driven Assignment: Assign highest priorities to

processes with shortest deadlines.

• Rate Monotonic Assignment: Assign highest priorities to

processes that run most frequently without regard to

deadlines.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 54

Modified Process Model

Until Now:

• Deadlines can be less than period (D < T)

• Sporadic and aperiodic processes, as well as periodic processes,

can be supported.

• Process interactions are possible, with the resulting blocking

being factored into the response time equations.

Extensions to the Original Model

• Cooperative Scheduling

• Release Jitter

• Arbitrary Deadlines

• Fault Tolerance

• Offsets

• Optimal Priority Assignment

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 55

Cooperative Scheduling

• True preemptive behavior is not always acceptable for safety-

critical systems.

• Cooperative or deferred preemption splits processes into slots

• Mutual exclusion is via non-preemption.

• The use of deferred preemption has two important advantages.

▪ It increases the schedulability of the system, and it can lead to

lower values of C(computation time).With deferred preemption,

no interference can occur during the last slot of execution.

After the solution converge i.e.

The response time is given by:
i

n

ii
FwR +=

1+= n

i

n

i
ww

j
ihpj

j

n

i

iiMAX

n

i
C

T

w
FCBw  








+−+=



+

)(

1Let the execution time

of the final block be!

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 56

Fault Tolerance

• Fault tolerance via either forward or backward error recovery

always results in extra computation.

• This could be an exception handler or a recovery block.

• In a real-time fault tolerant system, deadlines should still be met

even when a certain level of faults occur.

• This level of fault tolerance is known as the fault model.

• If the extra computation time resulting from an error in process, i

is f

i
C

 where hep(i) is set of processes with priority equal to or

 higher than i

f

k
ihepk

j
ihpj

j

i

iii
CC

T

R
BCR max

)()(
+








++= 

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 57

Fault Tolerance

If F is the number of faults allows

If there is a minimum arrival interval


























+












++=



 f

k

f

i

ihepk

j

ihpj j

i

iii C
T

R
C

T

R
BCR max

)()(

f

k
ihepk

j
ihpj

j

i

iii
FCC

T

R
BCR max

)()(
+








++= 

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 58

Dynamic Systems and Online Analysis

• There are dynamic soft real-time applications in which arrival

patterns and computation times are not known a priori.

• Although some level of off-line analysis may still be applicable,

this can no longer be complete and hence some form of on-line

analysis is required.

• The main task of an on-line scheduling scheme is to manage any

overload that is likely to occur due to the dynamics of the system's

environment.

• EDF is a dynamic scheduling scheme that is optimal.

• During transient overloads EDF performs very badly. It is possible

to get a cascade effect in which each process misses its deadline

but uses sufficient resources to result in the next process also

missing its deadline.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 59

Admission Schemes

To counter this detrimental domino effect many

on-line schemes have two mechanisms:
▪ An admissions control module that limits the number

of processes that are allowed to compete for the

processors, and

▪ An EDF dispatching routine for those processes that

are admitted.

• An ideal admissions algorithm prevents the

processors getting overloaded so that the EDF

routine works effectively.

© G. Khan Embedded Computer Systems–EE8205: Real-time Scheduling Page: 60

Values

• If some processes are to be admitted, whilst others rejected,

relative importance of each process must be known.

• This is usually achieved by assigning value.

• Values can be classified as:
Static: a process always has the same value whenever it is released.

Dynamic: the process's value can only be computed at the time the

process is released (because it is dependent on either environmental

factors or the current state of the system)

Adaptive: here the dynamic nature of the system is such that the

value of the process will change during its execution.

• To assign static values requires the domain specialists to

articulate their understanding of the desirable behavior of

the system.

